Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Mol Neurobiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520610

RESUMO

NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.

2.
J Med Genet ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508705

RESUMO

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.

4.
Clin Genet ; 105(4): 397-405, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38173219

RESUMO

CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.


Assuntos
Epilepsias Parciais , Epilepsia , Hidrocefalia , Lactente , Adulto , Humanos , Epilepsias Parciais/genética , Epilepsia/genética , Hidrocefalia/genética , Genótipo , Estudos de Associação Genética , Proteínas dos Microfilamentos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
6.
Seizure ; 116: 4-13, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37777370

RESUMO

PURPOSE: To provide an updated list of epilepsy-associated genes based on clinical-genetic evidence. METHODS: Epilepsy-associated genes were systematically searched and cross-checked from the OMIM, HGMD, and PubMed databases up to July 2023. To facilitate the reference for the epilepsy-associated genes that are potentially common in clinical practice, the epilepsy-associated genes were ranked by the mutation number in the HGMD database and by case number in the China Epilepsy Gene 1.0 project, which targeted common epilepsy. RESULTS: Based on the OMIM database, 1506 genes were identified to be associated with epilepsy and were classified into three categories according to their potential association with epilepsy or other abnormal phenotypes, including 168 epilepsy genes that were associated with epilepsies as pure or core symptoms, 364 genes that were associated with neurodevelopmental disorders as the main symptom and epilepsy, and 974 epilepsy-related genes that were associated with gross physical/systemic abnormalities accompanied by epilepsy/seizures. Among the epilepsy genes, 115 genes (68.5%) were associated with epileptic encephalopathy. After cross-checking with the HGMD and PubMed databases, an additional 1440 genes were listed as potential epilepsy-associated genes, of which 278 genes have been repeatedly identified variants in patients with epilepsy. The top 100 frequently reported/identified epilepsy-associated genes from the HGMD database and the China Epilepsy Gene 1.0 project were listed, among which 40 genes were identical in both sources. SIGNIFICANCE: Recognition of epilepsy-associated genes will facilitate genetic screening strategies and be helpful for precise molecular diagnosis and treatment of epilepsy in clinical practice.


Assuntos
Epilepsia , Humanos , Epilepsia/genética , Convulsões/genética , Testes Genéticos , Mutação/genética , Bases de Dados Factuais , Fenótipo
7.
Seizure ; 116: 119-125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37903666

RESUMO

OBJECTIVES: The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS: Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS: The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION: This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.


Assuntos
Epilepsia Generalizada , Epilepsia , Transtornos do Neurodesenvolvimento , Lactente , Humanos , Mutação , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Dineínas do Citoplasma/genética
8.
Clin Transl Med ; 13(6): e1289, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264743

RESUMO

BACKGROUND: HCFC1 encodes transcriptional co-regulator HCF-1, which undergoes an unusual proteolytic maturation at a centrally located proteolysis domain. HCFC1 variants were associated with X-linked cobalamin metabolism disorders and mental retardation-3. This study aimed to explore the role of HCFC1 variants in common epilepsy and the mechanism underlying phenotype heterogeneity. METHODS: Whole-exome sequencing was performed in a cohort of 313 patients with idiopathic partial (focal) epilepsy. Functional studies determined the effects of the variants on the proteolytic maturation of HCF-1, cell proliferation and MMACHC expression. The role of HCFC1 variants in partial epilepsy was validated in another cohort from multiple centers. RESULTS: We identified seven hemizygous HCFC1 variants in 11 cases and confirmed the finding in the validation cohort with additional 13 cases and six more hemizygous variants. All patients showed partial epilepsies with favorable outcome. None of them had cobalamin disorders. Functional studies demonstrated that the variants in the proteolysis domain impaired the maturation by disrupting the cleavage process with loss of inhibition of cell growth but did not affect MMACHC expression that was associated with cobalamin disorder. The degree of functional impairment was correlated with the severity of phenotype. Further analysis demonstrated that variants within the proteolysis domain were associated with common and mild partial epilepsy, whereas those in the kelch domain were associated with cobalamin disorder featured by severe and even fatal epileptic encephalopathy, and those in the basic and acidic domains were associated with mainly intellectual disability. CONCLUSION: HCFC1 is potentially a candidate gene for common partial epilepsy with distinct underlying mechanism of proteolysis dysfunction. The HCF-1 domains played distinct functional roles and were associated with different clinical phenotypes, suggesting a sub-molecular effect. The distinct difference between cobalamin disorders and idiopathic partial epilepsy in phenotype and pathogenic mechanism, implied a clinical significance in early diagnosis and management.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Proteólise , Epilepsia/genética , Vitamina B 12/genética , Vitamina B 12/metabolismo , Regulação da Expressão Gênica , Epilepsias Parciais/genética , Oxirredutases/genética , Oxirredutases/metabolismo
10.
Sci China Life Sci ; 66(9): 2152-2166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071290

RESUMO

Focal epilepsy accounts for 60% of all forms of epilepsy, but the pathogenic mechanism is not well understood. In this study, three novel mutations in NPRL3 (nitrogen permease regulator-like 3), c.937_945del, c.1514dupC and 6,706-bp genomic DNA (gDNA) deletion, were identified in three families with focal epilepsy by linkage analysis, whole exome sequencing (WES) and Sanger sequencing. NPRL3 protein is a component of the GATOR1 complex, a major inhibitor of mTOR signaling. These mutations led to truncation of the NPRL3 protein and hampered the binding between NPRL3 and DEPDC5, which is another component of the GATOR1 complex. Consequently, the mutant proteins enhanced mTOR signaling in cultured cells, possibly due to impaired inhibition of mTORC1 by GATOR1. Knockdown of nprl3 in Drosophila resulted in epilepsy-like behavior and abnormal synaptic development. Taken together, these findings expand the genotypic spectrum of NPRL3-associated focal epilepsy and provide further insight into how NPRL3 mutations lead to epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Epilepsia/genética , Mutação , Alvo Mecanístico do Complexo 1 de Rapamicina
11.
J Med Genet ; 60(8): 776-783, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36600631

RESUMO

BACKGROUND: BSN gene encodes Bassoon, an essential protein to assemble the cytomatrix at the active zone of neurotransmitter release. This study aims to explore the relationship between BSN variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 313 cases (trios) with epilepsies of unknown causes. Additional cases with BSN variants were collected from China Epilepsy Gene V.1.0 Matching Platform. The Clinical Validity Framework of ClinGen was used to evaluate the relationship between BSN variants and epilepsy. RESULTS: Four pairs of compound heterozygous variants and one cosegregating heterozygous missense variant in BSN were identified in five unrelated families. These variants presented statistically higher frequency in the case cohort than in controls. Additional two de novo heterozygous nonsense variants and one cosegregating heterozygous missense variant were identified in three unrelated cases from the gene matching platform, which were not present in the Genome Aggregation Database. The missense variants tended to be located in C-terminus, including the two monoallelic missense variants. Protein modelling showed that at least one missense variant in each pair of compound heterozygous variants had hydrogen bond alterations. Clinically, two cases were diagnosed as idiopathic generalised epilepsy, two as focal epilepsy and the remaining four as epilepsy with febrile seizures plus. Seven out of eight probands showed infancy or childhood-onset epilepsy. Eight out of 10 affected individuals had a history of febrile convulsions. All the cases were seizure-free. The cases with monoallelic variants achieved seizure-free without treatment or under monotherapy, while cases with biallelic missense variants mostly required combined therapy. The evidence from ClinGen Framework suggested an association between BSN variants and epilepsy. CONCLUSION: The BSN gene was potentially a novel candidate gene for epilepsy. The phenotypical severity was associated with the genotypes and the molecular subregional effects of the variants.


Assuntos
Epilepsias Parciais , Epilepsia Generalizada , Criança , Humanos , Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Genótipo , Mutação de Sentido Incorreto/genética
12.
CNS Neurosci Ther ; 29(2): 727-735, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36514184

RESUMO

AIMS: Etiology of the majority patients with idiopathic partial epilepsy (IPE) remains elusive. We thus screened the potential disease-associated variants in the patients with IPE. METHODS: Trios-based whole exome sequencing was performed in a cohort of 320 patients with IPE. Frequency and molecular effects of variants were predicted. RESULTS: Three novel BRWD3 variants were identified in five unrelated cases with IPE, which were four male cases and one female case. The variants included two recurrent missense variants (c.836C>T/p.Thr279Ile and c.4234A>C/p.Ile1412Leu) and one intronic variant close to splice site (c.2475 + 6A>G). The two missense variants were located in WD40 repeat domain and bromodomain, respectively. They were predicted to be damaging by silico tools and change hydrogen bonds with surrounding amino acids. The frequency of mutant alleles in this cohort was significantly higher than that in the controls of East Asian and all population of gnomAD. All these variants were inherited from the asymptomatic mothers. Four male cases presented frequent seizures at onset, while the female case only had two fever-triggered seizures. They showed good responses to valproate and lamotrigine, then finally became seizure free. All the cases had no intellectual disability. Further analysis demonstrated that all previously reported destructive variants of BRWD3 caused intellectual disability, while missense variants located in WD40 repeat domains and bromodomains of BRWD3 were associated with epilepsy. CONCLUSION: BRWD3 gene is potentially associated with X-linked partial epilepsy without intellectual disability. The genotypes and locations of BRWD3 variants may explain for their phenotypic variation.


Assuntos
Epilepsias Parciais , Epilepsia , Deficiência Intelectual , Convulsões Febris , Humanos , Masculino , Feminino , Deficiência Intelectual/genética , Epilepsias Parciais/genética , Epilepsia/genética , Mutação , Anticonvulsivantes , Fatores de Transcrição/genética
13.
Front Mol Neurosci ; 16: 1290919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249294

RESUMO

Background: The DLG3 gene encodes disks large membrane-associated guanylate kinase scaffold protein 3, which plays essential roles in the clustering of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously, DLG3 has been identified as the causative gene of X-linked intellectual developmental disorder-90 (XLID-90; OMIM# 300850). This study aims to explore the phenotypic spectrum of DLG3 and the genotype-phenotype correlation. Methods: Trios-based whole-exome sequencing was performed in patients with epilepsy of unknown causes. To analyze the genotype-phenotype correlations, previously reported DLG3 variants were systematically reviewed. Results: DLG3 variants were identified in seven unrelated cases with epilepsy. These variants had no hemizygous frequencies in controls. All variants were predicted to be damaging by silico tools and alter the hydrogen bonds with surrounding residues and/or protein stability. Four cases mainly presented with generalized seizures, including generalized tonic-clonic and myoclonic seizures, and the other three cases exhibited secondary generalized tonic-clonic seizures and focal seizures. Multifocal discharges were recorded in all cases during electroencephalography monitoring, including the four cases with generalized discharges initially but multifocal discharges after drug treating. Protein-protein interaction network analysis revealed that DLG3 interacts with 52 genes with high confidence, in which the majority of disease-causing genes were associated with a wide spectrum of neurodevelopmental disorder (NDD) and epilepsy. Three patients with variants locating outside functional domains all achieved seizure-free, while the four patients with variants locating in functional domains presented poor control of seizures. Analysis of previously reported cases revealed that patients with non-null variants presented higher percentages of epilepsy than those with null variants, suggesting a genotype-phenotype correlation. Significance: This study suggested that DLG3 variants were associated with epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3. The observed genotype-phenotype correlation potentially contributes to the understanding of the underlying mechanisms driving phenotypic variation.

14.
Am J Med Genet B Neuropsychiatr Genet ; 189(7-8): 247-256, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36453712

RESUMO

CELSR1 gene, encoding cadherin EGF LAG seven-pass G-type receptor 1, is mainly expressed in neural stem cells during the embryonic period. It plays an important role in neurodevelopment. However, the relationship between CELSR1 and disease of the central nervous system has not been defined. In this study, we performed trios-based whole-exome sequencing in a cohort of 356 unrelated cases with partial epilepsy without acquired causes and identified CELSR1 variants in six unrelated cases. The variants included one de novo heterozygous nonsense variant, one de novo heterozygous missense variant, and four compound heterozygous missense variants that had one variant was located in the extracellular region and the other in the cytoplasm. The patients with biallelic variants presented severe epileptic phenotypes, whereas those with heterozygous variants were associated with a mild epileptic phenotype of benign epilepsy with centrotemporal spikes (BECTS). These variants had no or low allele frequency in the gnomAD database. The frequencies of the CELSR1 variants in this cohort were significantly higher than those in the control populations. The evidence from ClinGen Clinical-Validity Framework suggested a strong association between CELSR1 variants and epilepsy. These findings provide evidence that CELSR1 is potentially a candidate pathogenic gene of partial epilepsy of childhood.


Assuntos
Epilepsias Parciais , Humanos , Epilepsias Parciais/genética , Caderinas/genética , Alelos , Heterozigoto , Mutação de Sentido Incorreto/genética
15.
Opt Express ; 30(12): 21184-21194, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224843

RESUMO

High pattern fidelity is paramount to the performance of metalenses and metasurfaces, but is difficult to achieve using economic photolithography technologies due to low resolutions and limited process windows of diverse subwavelength structures. These hurdles can be overcome by photomask sizing or reshaping, also known as optical proximity correction (OPC). However, the lithographic simulators critical to model-based OPC require precise calibration and have not yet been specifically developed for metasurface patterning. Here, we demonstrate an accurate lithographic model based on Hopkin's image formulation and fully convolutional networks (FCN) to control the critical dimension (CD) patterning of a near-infrared (NIR) metalens through a distributed OPC flow using i-line photolithography. The lithographic model achieves an average ΔCD/CD = 1.69% due to process variations. The model-based OPC successfully produces the 260 nm CD in a metalens layout, which corresponds to a lithographic constant k1 of 0.46 and is primarily limited by the resolution of the photoresist. Consequently, our fabricated NIR metalens with a diameter of 1.5 mm and numerical aperture (NA) of 0.45 achieves a measured focusing efficiency of 64%, which is close to the calculated value of 69% and among the highest reported values using i-line photolithography.

16.
Epilepsy Res ; 187: 107036, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279688

RESUMO

OBJECTIVE: BCOR gene, encoding a corepressor of BCL6, plays an important role in fetal development. BCOR mutations were previously associated with oculofaciocardiodental syndrome (OFCD or MCOPS2, OMIM# 300166). The BCOR protein is ubiquitously expressed in multiple areas, including the brain. However, the role of BCOR in neurological disorder remains elusive. METHODS: Trios-based whole-exome sequencing was performed in a cohort of 323 cases with partial epilepsy without acquired causes. RESULTS: Seven hemizygous missense BCOR variants, including c 0.103 G>C/p.Asp35His, c.1079 A>G/p.His360Arg, c 0.1097 C>T/p.Thr366Ile, c 0.3301 C>T/p.Pro1101Ser, c 0.3391 C>T/p.Arg1131Trp, c 0.4199 G>A/p.Arg1400Gln, and c 0.5254 G>A/p.Asp1752Asn, were identified in seven cases with partial epilepsy. Two patients presented partial seizures with generalized seizures and/or generalized discharges. One case showed cortical dysplasia in the right temporal-occipital area on MRI. Two cases presented mild developmental delay. However, all patients achieved seizure-free. The frequency of BCOR variants in the present cohort was significantly higher than that in the controls of healthy Chinese volunteers and all populations of Genome Aggregation Database (gnomAD). Computational modeling, including hydrogen bond and prediction of protein stability, implied that the variants lead to structural impairment. Previously, OFCD associated BCOR mutations were mostly destructive mutations in an X-linked dominant (XLD) pattern; in contrast, the BCOR variants identified in this study were all missense variants, which were associated with partial epilepsy in an X-linked recessive (XLR) pattern. The proportion of missense mutations in epilepsy was significantly higher than that in OFCD. CONCLUSIONS: BCOR was potentially a candidate pathogenic gene of partial epilepsy with or without developmental delay. The genotype-phenotype correlation helps understanding the mechanism underlying phenotypic variation.


Assuntos
Epilepsias Parciais , Microftalmia , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Microftalmia/genética
18.
Front Mol Neurosci ; 15: 825390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663266

RESUMO

Objective: The LAMA5 gene encodes the laminin subunit α5, the most abundant laminin α subunit in the human brain. It forms heterotrimers with the subunit ß1/ß2 and γ1/γ3 and regulates neurodevelopmental processes. Genes encoding subunits of the laminin heterotrimers containing subunit α5 have been reported to be associated with human diseases. Among LAMAs encoding the laminin α subunit, LAMA1-4 have also been reported to be associated with human disease. In this study, we investigated the association between LAMA5 and epilepsy. Methods: Trios-based whole-exome sequencing was performed in a cohort of 118 infants suffering from focal seizures with or without spasms. Protein modeling was used to assess the damaging effects of variations. The LAMAs expression was analyzed with data from the GTEX and VarCards databases. Results: Six pairs of compound heterozygous missense variants in LAMA5 were identified in six unrelated patients. All affected individuals suffered from focal seizures with mild developmental delay, and three patients presented also spasms. These variants had no or low allele frequencies in controls and presented statistically higher frequency in the case cohort than in controls. The recessive burden analysis showed that recessive LAMA5 variants identified in this cohort were significantly more than the expected number in the East Asian population. Protein modeling showed that at least one variant in each pair of biallelic variants affected hydrogen bonds with surrounding amino acids. Among the biallelic variants in cases with only focal seizures, two variants of each pair were located in different structural domains or domains/links, whereas in the cases with spasms, the biallelic variants were constituted by two variants in the identical functional domains or both with hydrogen bond changes. Conclusion: Recessive LAMA5 variants were potentially associated with infant epilepsy. The establishment of the association between LAMA5 and epilepsy will facilitate the genetic diagnosis and management in patients with infant epilepsy.

19.
Front Mol Neurosci ; 15: 861159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620448

RESUMO

Objective: The PKD1 encodes polycystin-1, a large transmembrane protein that plays important roles in cell proliferation, apoptosis, and cation transport. Previous studies have identified PKD1 mutations in autosomal dominant polycystic kidney disease (ADPKD). However, the expression of PKD1 in the brain is much higher than that in the kidney. This study aimed to explore the association between PKD1 and epilepsy. Methods: Trios-based whole-exome sequencing was performed in a cohort of 314 patients with febrile seizures or epilepsy with antecedent febrile seizures. The damaging effects of variants was predicted by protein modeling and multiple in silico tools. The genotype-phenotype association of PKD1 mutations was systematically reviewed and analyzed. Results: Eight pairs of compound heterozygous missense variants in PKD1 were identified in eight unrelated patients. All patients suffered from febrile seizures or epilepsy with antecedent febrile seizures with favorable prognosis. All of the 16 heterozygous variants presented no or low allele frequencies in the gnomAD database, and presented statistically higher frequency in the case-cohort than that in controls. These missense variants were predicted to be damaging and/or affect hydrogen bonding or free energy stability of amino acids. Five patients showed generalized tonic-clonic seizures (GTCS), who all had one of the paired missense mutations located in the PKD repeat domain, suggesting that mutations in the PKD domains were possibly associated with GTCS. Further analysis demonstrated that monoallelic mutations with haploinsufficiency of PKD1 potentially caused kidney disease, compound heterozygotes with superimposed effects of two missense mutations were associated with epilepsy, whereas the homozygotes with complete loss of PKD1 would be embryonically lethal. Conclusion: PKD1 gene was potentially a novel causative gene of epilepsy. The genotype-phenotype relationship of PKD1 mutations suggested a quantitative correlation between genetic impairment and phenotypic variation, which will facilitate the genetic diagnosis and management in patients with PKD1 mutations.

20.
Front Mol Neurosci ; 15: 889534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600075

RESUMO

Purpose: To identify novel genetic causes of febrile seizures (FS) and epilepsy with febrile seizures plus (EFS+). Methods: We performed whole-exome sequencing in a cohort of 32 families, in which at least two individuals were affected by FS or EFS+. The probands, their parents, and available family members were recruited to ascertain whether the genetic variants were co-segregation. Genes with repetitively identified variants with segregations were selected for further studies to define the gene-disease association. Results: We identified two heterozygous ATP6V0C mutations (c.64G > A/p.Ala22Thr and c.361_373del/p.Thr121Profs*7) in two unrelated families with six individuals affected by FS or EFS+. The missense mutation was located in the proteolipid c-ring that cooperated with a-subunit forming the hemichannel for proton transferring. It also affected the hydrogen bonds with surround residues and the protein stability, implying a damaging effect. The frameshift mutation resulted in a loss of function by yielding a premature termination of 28 residues at the C-terminus of the protein. The frequencies of ATP6V0C mutations identified in this cohort were significantly higher than that in the control populations. All the six affected individuals suffered from their first FS at the age of 7-8 months. The two probands later manifested afebrile seizures including myoclonic seizures that responded well to lamotrigine. They all displayed favorable outcomes without intellectual or developmental abnormalities, although afebrile seizures or frequent seizures occurred. Conclusion: This study suggests that ATP6V0C is potentially a candidate pathogenic gene of FS and EFS+. Screening for ATP6V0C mutations would help differentiating patients with Dravet syndrome caused by SCN1A mutations, which presented similar clinical manifestation but different responses to antiepileptic treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...