Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 141: 109036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640121

RESUMO

In recent years, shrimp farming has experienced significant losses due to the emergence of DIV1 (Decapod iridescent virus 1), an infectious virus with a high fatality rate among shrimp. In this study, we conducted transcriptomic analyses on shrimp Litopenaeus vannamei hemocytes following DIV1 infection and focused on the function of genes in the Glycolysis pathway during DIV1 infection. A total of 2197 differentially expressed genes (DEGs) were identified, comprising 1506 up-regulated genes and 691 down-regulated genes. These genes were primarily associated with Phagosome, ECM-Receptor Interaction, Drug Metabolism-Other Enzymes, and the AGE-RAGE signaling pathway in diabetic complications. KEGG pathway enrichment analysis of the DEGs revealed a noteworthy correlation with metabolic pathways, with a specific focus on glucose metabolism. Specifically, the Glycolysis/Gluconeogenesis pathway exhibited significant upregulation following DIV1 infection. In line with this, we observed an augmented accumulation of glycolytic-related metabolites in the hemolymph following DIV1 challenge along with upregulation of the relative mRNA expression of several glycolytic-related genes. Moreover, we found that the inhibition of lactate dehydrogenase (LDH) activity through RNAi or the use of an inhibitor resulted in reduced lactate production, effectively safeguarding shrimp from DIV1 infection. These findings not only provide a comprehensive dataset for further investigation into DIV1 pathogenesis but also offer valuable insights into the immunometabolism mechanisms that govern shrimp responses to DIV1 infection.


Assuntos
Penaeidae , Transcriptoma , Animais , Perfilação da Expressão Gênica , Penaeidae/genética , Glicólise , Redes e Vias Metabólicas
2.
J Immunol ; 209(10): 2022-2032, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426947

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates immune modulation following exposure of animals to many environmental xenobiotics. However, its role in innate immune responses during viral infection is not fully understood, especially in invertebrates. In this study, a cDNA encoding an AhR homolog was cloned from an arthropod Litopenaeus vannamei (LvAhR). The expression of LvAhR was strongly upregulated in response to the challenge of white spot syndrome virus, a pathogen of highly contagious and fatal infectious disease of shrimp. The relevance of LvAhR to host defense was underlined by heightened susceptibility and elevated virus loads after AhR-silenced shrimp exposure to white spot syndrome virus. LvAhR could induce an apoptosis response through regulating the expression of L. vannamei caspase-1 (homologous to human caspase-3) by directly targeting its promoter that was required to couple with AhR nuclear translocator. Additionally, knockdown of L. vannamei caspase-1 resulted in elevated virus titers and a lower cell apoptotic rate. Thus, we demonstrate that an AhR-caspase axis restrains virus replication by promoting antiviral apoptosis, supporting a previously unidentified direct link between AhR signaling and caspase-mediated apoptosis signaling and, furthermore, suggests that the AhR-caspase axis could be a potential therapeutic target for enhancing antiviral responses in arthropods.


Assuntos
Artrópodes , Vírus da Síndrome da Mancha Branca 1 , Animais , Humanos , Receptores de Hidrocarboneto Arílico/genética , Caspases/genética , Antivirais , Apoptose/genética , Caspase 1
3.
Front Microbiol ; 13: 1097931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713173

RESUMO

Introduction: Decapod iridescent virus 1 (DIV1) has caused severe economic losses in shrimp aquaculture. So far, Researchs on DIV1-infected shrimp have mainly focused on the hemocytes immune response, while studies on the host-intestine microbiota interactions during DIV1 infection have been scarce. Methods: This study determined the lethal concentration 50 (LC50) of DIV1 to Metapenaeus ensis, preliminarily determining that M. ensis could serve as a susceptible object for DIV1. The interactions and responses between the immune and intestine microbiota of shrimp under DIV1 infection were also investigated. Results and Discussion: DIV1 infection decreases intestine bacterial diversity and alters the composition of intestine microbiota. Specifically, DIV1 infection decreases the abundance of potentially beneficial bacteria (Bacteroidetes, Firmicutes, and Actinobacteria), and significantly increases the abundance of pathogenic bacteria such as Vibrio and Photobacterium, thereby increasing the risk of secondary bacterial infections. The results of PICRUSt functional prediction showed that altered intestine microbiota induces host metabolism disorders, which could be attributed to the bioenergetic and biosynthetic requirements for DIV1 replication in shrimp. The comparative transcriptomic analysis showed that some metabolic pathways related to host immunity were significantly activated following DIV1 infection, including ncRNA processing and metabolic process, Ascorbate and aldarate metabolism, and Arachidonic acid metabolism. M. ensis may against DIV1 infection by enhancing the expression of some immune-related genes, such as Wnt16, heat shock protein 90 (Hsp90) and C-type lectin 3 (Ctl3). Notably, correlation analysis of intestinal microbial variation with host immunity showed that expansion of pathogenic bacteria (Vibrio and Photobacterium) in DIV1 infection could increased the expression of NF-κB inhibitors cactus-like and Toll interacting protein (Tollip), which may limit the TLR-mediated immune response and ultimately lead to further DIV1 infection. Significance and Impact of the Study: This study enhances our understanding of the interactions between shrimp immunity and intestinal microbiota. The ultimate goal is to develop novel immune enhancers for shrimp and formulate a safe and effective DIV1 defense strategy.

4.
Fish Shellfish Immunol Rep ; 2: 100034, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420505

RESUMO

Penaeidins are members of an antimicrobial peptide (AMP) family that have broad anti-microbial activities only found in penaeid shrimps. The LvBigPEN, a member of penaeidins from shrimp Litopenaeus vannamei, has showed antiviral activity against white spot syndrome virus (WSSV) in our previous report. However, whether LvBigPEN possesses potential anti-bacterial activities is still unknown. Herein, we found that the LvBigPEN played an important role in restricting the infection of Vibrio parahaemolyticus, a natural and Gram-negative bacteria pathogen in shrimp. The transcription of LvBigPEN was strongly induced after V. parahaemolyticus challenge. RNA interference (RNAi) mediated knockdown of LvBigPEN showed that LvBigPEN had a potential antibacterial function against V. parahaemolyticus. Microorganism binding assays indicated that rLvBigPEN could bind to both Gram-negative bacteria and Gram-positive bacteria. Transmission electron microscopy (TEM) analysis showed its ability to destroy bacterial cells in vitro. Besides, in a gel retardation assay, rLvBigPEN could bind to plasmid DNA and bacteria (V. parahaemolyticus) genomic DNA in a concentration-dependent manner. Moreover, the AP-1 pathway could participate in the transcription of LvBigPEN by the dual luciferase reporter assays. Taken together, these results suggested that LvBigPEN possessed the antibacterial activity against V. parahaemolyticus and may be alternative agents for the prevention and treatment of diseases caused by V. parahaemolyticus.

5.
Front Immunol ; 11: 1904, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983114

RESUMO

Decapod iridescent virus 1 (DIV1) results in severe economic losses in shrimp aquaculture. However, little is known about the physiological effect of DIV1 infection on the host. In this study, we found that the lethal dose 50 of DIV1-infected Litopenaeus vannamei after 48, 72, 96, and 156 h were 4.86 × 106, 5.07 × 105, 2.13 × 105, and 2.38 × 104 copies/µg DNA, respectively. In order to investigate the mechanisms of DIV1 infection, a comparative transcriptome analysis of hemocytes from L. vannamei, infected or not with DIV1, was conducted. The BUSCO analysis showed that the transcriptome was with high completeness (complete single-copy BUSCOs: 57.3%, complete duplicated BUSCOs: 41.1%, fragmentation: 0.8%, missing: 0.8%). A total of 168,854 unigenes were assembled, with an average length of 601 bp. Based on homology searches, Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), and cluster of orthologous groups of proteins (KOG) analysis, 62,270 (36.88%) unigenes were annotated. Among them, 1,112 differentially expressed genes (DEGs) were identified, of which 889 genes were up-regulated and 223 genes were down-regulated after DIV1 infection. These genes were mainly annotated to the major metabolic processes such as fructose and mannose metabolism, carbon metabolism, and inositol phosphate metabolism. Among these metabolic pathways, the triosephosphate isomerase (TPI) family was the most eye-catching DEG as it participates in several metabolic processes. Three types of TPI, LvTPI-like, LvTPI-Blike, and LvTPI-Blike1, were obtained for gene silencing by RNA interference. The results showed that LvTPI-like and LvTPI-Blike1 silencing caused a high mortality rate among L. vannamei. However, LvTPI-like and LvTPI-Blike silencing reduced DIV1 replication in DIV1-infected L. vannamei. All the results indicated that TPI-like genes play an important role during DIV1 infection, which provides valuable insight into the infection mechanism of DIV1 in shrimp and may aid in preventing viral diseases in shrimp culture.


Assuntos
Infecções por Vírus de DNA/veterinária , Perfilação da Expressão Gênica , Iridoviridae/patogenicidade , Penaeidae/genética , Penaeidae/virologia , Frutos do Mar/virologia , Transcriptoma , Triose-Fosfato Isomerase/genética , Animais , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/virologia , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Penaeidae/enzimologia , RNA-Seq
6.
Fish Shellfish Immunol ; 104: 8-17, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32473357

RESUMO

The banana shrimp (Fenneropenaeus merguiensis) is a common cultural species worldwide. With the development of the shrimp farming industry, increasing number of diseases have emerged and cause huge impacts. Decapod iridescent virus 1 (DIV1) is a new virus of the family Iridoviridae isolated in China that causes very high mortality in shrimp. In this study, DIV1 and PBS were injected into two groups of shrimp, and hemocytes were collected for comparative transcriptomic analysis. We confirmed that F. merguiensis was the new host of DIV1 by nested PCR. A total of 100,759 unigenes were assembled from the control group and the DIV1 infected group, with an average length of 733.06 bp and N50 of 1136 bp. Significant hits were found in 21,465 unigenes compared to known sequences in major databases including COG (33.30%), GO (42.17%), KEGG (46.76%), KOG (61.37%), Pfam (66.90%), Swissprot (54.21%) and Nr (93.86%). A total of 1003 differentially expressed genes (DEGs) were identified, including 929 up-regulated genes and 74 down-regulated genes. Several known immune-related genes, including caspase, C-type lectin, Wnt5 and integrin, were among the differentially expressed transcripts. A total of 14,459 simple sequence repeats, including 8128 monomers, 3276 dimers, 1693 trimers, 150 quadmers, 4 pentamers and 16 hexamers, were found in the transcriptomic dataset. Our study is the first comprehensive investigation of the transcriptomic response to DIV1 infection in F. merguiensis. Collectively, these results not only provide valuable information for characterizing the immune mechanisms of the shrimp responses to DIV1 infection, they open new ways for the study of the molecular mechanisms of DIV1 infection in F. merguiensis.


Assuntos
Hemócitos/imunologia , Imunidade Inata/genética , Iridoviridae/fisiologia , Penaeidae/imunologia , Transcriptoma , Animais , Perfilação da Expressão Gênica , Penaeidae/genética
7.
Fish Shellfish Immunol ; 92: 480-488, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207301

RESUMO

Antibacterial peptides (AMPs) are expected to replace some or all of the antibiotics and become a new feed additive. However, the high production cost and unclear mechanism limited the application of AMPs. In this research, the effects of a commercial polypeptide (Polypeptide S100) whose main components are AMPs on the growth, antibacterial immune and intestinal microbial of Litopenaeus vannamei were study. L. vannamei (initial weight of 0.16 ±â€¯0.03 g) were fed for 123 days with basal diet added Polypeptide S100 at two levels each (0.5% and 1%) as experimental groups, and a basal diet as control. Dietary inclusion of Polypeptide S100 at 1% level significantly increased the weight gain (WG) and specific growth rate (SGR) of L. vannamei. The survival rates of L. vannamei in 0.5% and 1% Polypeptide S100 groups were significantly higher than the control when infected by Vibrio harveyi but not Vibrio parahaemolyticus. The activities of total superoxide dismutase (T-SOD) and lysozyme (LZM) in the two experimental groups were all significantly higher than the control. Differently, the activities of amylase (AMS) and lipase (LPS) were significantly higher in 0.5% Polypeptide S100 group but lower in 1.0% Polypeptide S100 group. Illumina MiSeq high-throughput sequencing showed that the dominant phyla in the intestine of L. vannamei were Proteobacteria, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Fusobacteria and Tenericutes, and the abundance of predominant phyla Cyanobacteria were upregulated significantly in the experimental groups. At the family level, significant increase was observed in Pseudomonadaceae and Xanthomonadaceae but decrease in Vibrionaceae in the 1.0% Polypeptide S100 group. The abundance of predominant genus Photobacterium were obviously downregulated in the two experimental groups. Unlikely, the abundance of Pseudomonas and Stenotrophomonas were distinctly increased in the 1.0% Polypeptide S100 group but not significantly different from the control in 0.5% Polypeptide S100 group. All these results suggested that Polypeptide S100 could improve the growth performance, antibacterial immune and intestinal microbiota structure of L. vannamei.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Penaeidae/imunologia , Peptídeos/metabolismo , Proteínas S100/metabolismo , Ração Animal/análise , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dieta , Suplementos Nutricionais/análise , Penaeidae/crescimento & desenvolvimento , Penaeidae/microbiologia , Peptídeos/administração & dosagem , Proteínas S100/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...