Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecology ; : e4425, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311032

RESUMO

Like alien plant invasion, range expansion of native plants may threaten biodiversity and economies, rendering them native invaders. Variation in abiotic and biotic conditions across a large geographic scale greatly affects variation in traits and interactions with herbivores of native plant invaders, which is an interesting yet mostly unexplored issue. We used a common garden experiment to compare defensive/nutritional traits and palatability to generalist herbivores of 20 native (23.64° N-30.18° N) and introduced range (31.58° N-36.87° N) populations of Reynoutria japonica, which is a native invader following range expansion in China. We analyzed the relationships among herbivore pressure, climate, plant chloroplast haplotypes, leaf traits, and herbivore performance. Of the 16 variables tested, we observed range differences in 11 variables and latitudinal clines in nine variables. In general, herbivores performed better on the introduced plants than on the native plants, and better on the high-latitude plants than on the low-latitude plants within the introduced populations. Three key traits (leaf thickness, specific leaf area, and carbon-to-nitrogen [C:N] ratio) determined palatability to herbivores and were significantly associated with temperature and/or precipitation of plant provenance as well as with plant haplotypes but not with herbivore pressure. Our results revealed a causal sequence from plant-range-based environmental forces and genetic context to plant quality and palatability to herbivores in R. japonica. These findings suggest a post-introduction evolution of R. japonica, which may partly explain the colonization success of this important native, but invasive plant.

2.
Am J Bot ; 109(6): 910-921, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35471767

RESUMO

PREMISE: Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS: We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS: Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS: Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.


Assuntos
Secas , Herbivoria , Espécies Introduzidas , Folhas de Planta/fisiologia , Plantas
3.
Oecologia ; 192(1): 105-118, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31792607

RESUMO

Multiple mechanisms may act synergistically to promote success of invasive plants. Here, we tested the roles of three non-mutually exclusive mechanisms-founder effects, post-introduction evolution and phenotypic plasticity-in promoting invasion of Chromolaena odorata. We performed a common garden experiment to investigate phenotypic diversification and phenotypic plasticity of the genetically impoverished invader in response to two rainfall treatments (ambient and 50% rainfall). We used ancestor-descendant comparisons to determine post-introduction evolution and the QST-FST approach to estimate past selection on phenotypic traits. We found that eight traits differed significantly between plants from the invasive versus native ranges, for two of which founder effects can be inferred and for six of which post-introduction evolution can be inferred. The invader experienced strong diversifying selection in the invasive range and showed clinal variations in six traits along water and/or temperature gradients. These clinal variations are likely attributed to post-introduction evolution rather than multiple introductions of pre-adapted genotypes, as most of the clinal variations were absent or in opposite directions from those for native populations. Compared with populations, rainfall treatments explained only small proportions of total variations in all studied traits for plants from both ranges, highlighting the importance of heritable phenotypic differentiation. In addition, phenotypic plasticity was similar for plants from both ranges although neutral genetic diversity was much lower for plants from the invasive range. Our results showed that founder effects, post-introduction evolution and phenotypic plasticity may function synergistically in promoting invasion success of C. odorata.


Assuntos
Evolução Biológica , Efeito Fundador , Adaptação Fisiológica , Espécies Introduzidas , Fenótipo
4.
Life Sci ; 240: 117069, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751582

RESUMO

AIM: Intraluminal thrombus (ILT) is presented in most abdominal aortic aneurysms (AAAs) and is suggested to promote AAA expansion. D-dimer, a breakdown product in the thrombus remodeling, may have prognostic value for AAA. This study investigated the interrelation between plasma D-dimer level, ILT volume, AAA size and progression. MAIN METHODS: This was a retrospective observational study that involved 181 patients with infra-renal AAA. They were divided into small and large AAA groups according to AAA diameter. 24 of them had repeated abdominal computed tomography angiography (CTA) scan and were divided into slow-growing and fast-growing AAA groups according to the median value of AAA growth rate. Baseline and follow-up plasma D-dimer level, maximum diameter of AAA, total infra-renal aortic volume and ILT volume were analyzed. KEY FINDINGS: Plasma D-dimer level was positively correlated with ILT volume (R = 0.382, P < 0.001) and maximum diameter of AAA (R = 0.442, P < 0.001). Increasing value of plasma D-dimer was positively associated with the accelerated growth rate of AAA (R = 0.720, P < 0.01). ILT volume showed positive correlation with maximum diameter (R = 0.859, P < 0.001) and growth rate of AAA (R = 0.490, P < 0.05). After adjusting the baseline ILT volume, the positive correlations remained to be statistically significant between plasma D-dimer level and AAA size (R = 0.200, P < 0.05), as well as increasing value of plasma D-dimer and growth rate of AAA (R = 0.642, P < 0.05). SIGNIFICANCE: Plasma D-dimer level reflected ILT burden in AAAs. Plasma D-dimer level and ILT volume were positively correlated with AAA size. Increasing value of plasma D-dimer and baseline ILT volume could be predictors of AAA progression.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico , Aneurisma da Aorta Abdominal/etiologia , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Trombose/complicações , Trombose/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Aneurisma da Aorta Abdominal/sangue , Efeitos Psicossociais da Doença , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Fumar/epidemiologia , Trombose/sangue , Tomografia Computadorizada por Raios X
5.
Ecol Lett ; 21(8): 1211-1220, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29808558

RESUMO

Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of 'invasion success' in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non-native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant-soil fungi and plant allelochemical interactions on invasion success were species-specific.


Assuntos
Chromolaena , Filogenia , Biomassa , China , Espécies Introduzidas
6.
J Org Chem ; 81(18): 8647-52, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27560461

RESUMO

A copper-catalyzed three-component tandem reaction has been developed for the convenient and practical synthesis of 1,4-benzothiazines. A variety of terminal alkynes and 2-iodo/bromophenyl isothiocyanates underwent this one-pot cyclization with aqueous ammonia to afford 1,4-benzothiazines in moderate to good yields.

7.
New Phytol ; 205(3): 1350-1359, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25367824

RESUMO

The evolution of increased competitive ability (EICA) hypothesis and the novel weapons hypothesis (NWH) are two non-mutually exclusive mechanisms for exotic plant invasions, but few studies have simultaneously tested these hypotheses. Here we aimed to integrate them in the context of Chromolaena odorata invasion. We conducted two common garden experiments in order to test the EICA hypothesis, and two laboratory experiments in order to test the NWH. In common conditions, C. odorata plants from the nonnative range were better competitors but not larger than plants from the native range, either with or without the experimental manipulation of consumers. Chromolaena odorata plants from the nonnative range were more poorly defended against aboveground herbivores but better defended against soil-borne enemies. Chromolaena odorata plants from the nonnative range produced more odoratin (Eupatorium) (a unique compound of C. odorata with both allelopathic and defensive activities) and elicited stronger allelopathic effects on species native to China, the nonnative range of the invader, than on natives of Mexico, the native range of the invader. Our results suggest that invasive plants may evolve increased competitive ability after being introduced by increasing the production of novel allelochemicals, potentially in response to naïve competitors and new enemy regimes.


Assuntos
Alelopatia , Evolução Biológica , Chromolaena/fisiologia , Espécies Introduzidas , Modelos Biológicos , Clima Tropical , Biomassa , Chromolaena/crescimento & desenvolvimento , Geografia , Sesquiterpenos/análise , Sesquiterpenos/química
8.
Oecologia ; 174(4): 1205-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24326694

RESUMO

Invasive plants generally escape from specialist herbivores of their native ranges but may experience serious damage from generalists. As a result, invasive plants may evolve increased resistance to generalists and tolerance to damage. To test these hypotheses, we carried out a common garden experiment comparing 15 invasive populations with 13 native populations of Chromolaena odorata, including putative source populations identified with molecular methods and binary choice feeding experiments using three generalist herbivores. Plants from invasive populations of C. odorata had both higher resistance to three generalists and higher tolerance to simulated herbivory (shoot removal) than plants from native populations. The higher resistance of plants from invasive populations was associated with higher leaf C content and densities of leaf trichomes and glandular scales, and lower leaf N and water contents. Growth costs were detected for tolerance but not for resistance, and plants from invasive populations of C. odorata showed lower growth costs of tolerance. Our results suggest that invasive plants may evolve to increase both resistance to generalists and tolerance to damage in introduced ranges, especially when the defense traits have low or no fitness costs. Greater defenses in invasive populations may facilitate invasion by C. odorata by reducing generalist impacts and increasing compensatory growth after damage has occurred.


Assuntos
Asteraceae/fisiologia , Evolução Biológica , Herbivoria , Espécies Introduzidas , Animais , Asteraceae/genética , Folhas de Planta/fisiologia
9.
PLoS One ; 8(8): e71767, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977140

RESUMO

The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges).


Assuntos
Chromolaena/fisiologia , Espécies Introduzidas , Folhas de Planta/fisiologia , Plantas Daninhas/fisiologia , Adaptação Fisiológica , Biomassa , Celulose/metabolismo , China , Chromolaena/crescimento & desenvolvimento , Fenóis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas Daninhas/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Clima Tropical
10.
J Plant Physiol ; 169(9): 884-91, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22472074

RESUMO

To explore the traits contributing to invasiveness of Eupatorium adenophorum and to test the relationship between plasticity of these traits and invasiveness, we compared E. adenophorum with its two native congeners at four irradiances (10%, 23%, 40%, and 100%). The invader showed constantly higher performance (relative growth rate and total biomass) across irradiances than its native congeners. Higher light-saturated photosynthetic rate (P(max)), respiration efficiency (RE), and nitrogen (PNUE) and water (WUE, at 40% and 100% irradiances only) use efficiencies contributed directly to the higher performance of the invader. Higher nitrogen allocation to, stomatal conductance, and the higher contents of leaf nitrogen and pigments contributed to the higher performance of the invader indirectly through increasing P(max), RE, PNUE and WUE. The invader had consistently higher plasticity only in carotenoid content than its native congeners in ranges of low (10-40%), high (40-100%) and total (10-100%) irradiances, contributing to invasion success in high irradiance by photo protection. In the range of low irradiances, the invader had higher plasticity in some physiological traits (leaf nitrogen content, nitrogen contents in bioenergetics, carboxylation and in light-harvesting components, and contents of leaf chlorophylls and carotenoids) but not in performance, while in the ranges of high or total irradiances, the invader did not show higher plasticity in any variable (except Car). The results indicated that the relationship between invasiveness and plasticity of a specific trait was complex, and that a universal generalization about the relationship might be too simplistic.


Assuntos
Ageratina/crescimento & desenvolvimento , Ageratina/efeitos da radiação , Eupatorium/crescimento & desenvolvimento , Eupatorium/efeitos da radiação , Folhas de Planta/efeitos da radiação , Luz Solar , Adaptação Fisiológica , Carotenoides/metabolismo , Respiração Celular/efeitos da radiação , Clorofila/metabolismo , Espécies Introduzidas , Nitrogênio/metabolismo , Fotossíntese/efeitos da radiação , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA