Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(46): 17971-17980, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37029743

RESUMO

Apparent quantum yields (Φ) of photochemically produced reactive intermediates (PPRIs) formed by dissolved organic matter (DOM) are vital to element cycles and contaminant fates in surface water. Simultaneous determination of ΦPPRI values from numerous water samples through existing experimental methods is time consuming and ineffective. Herein, machine learning models were developed with a systematic data set including 1329 data points to predict the values of three ΦPPRIs (Φ3DOM*, Φ1O2, and Φ·OH) based on DOM spectral parameters, experimental conditions, and calculation parameters. The best predictive performances for Φ3DOM*, Φ1O2, and Φ·OH were achieved using the CatBoost model, which outperformed the traditional linear regression models. The significances of the wavelength range and spectral parameters on the three ΦPPRI predictions were revealed, suggesting that DOM with lower molecular weight, lower aromatic content, and a more autochthonous portion possessed higher ΦPPRIs. Chain models were constructed by adding the predicted Φ3DOM* as a new feature into the Φ1O2 and Φ·OH models, which consequently improved the predictive performance of Φ1O2 but worsened the Φ·OH prediction likely due to the complex formation pathways of ·OH. Overall, this study offered robust ΦPPRI prediction across interlaboratory differences and provided new insights into the relationship between PPRIs formation and DOM properties.


Assuntos
Matéria Orgânica Dissolvida , Água
2.
J Hazard Mater ; 443(Pt B): 130321, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368062

RESUMO

Soil environment criteria (SEC) are commonly derived from the total concentration of pollutants in soils, resulting in overly stringent values. Herein, we examined the feasibility of deriving the SEC by using the bioaccessibility of pollutants. In this regard, soil samples from 33 locations at 12 mining/smelting sites in China were collected and examined in terms of soil properties, chemical fraction distributions, and bioaccessibilities of cadmium (Cd), lead (Pb), and arsenic (As). The gastric (GP) and intestinal phases (IP) of the potentially hazardous trace elements (PHEs) were measured by in vitro assays, showing that these values varied from 11 % to 72 %, 1-79 %, and 2-27 % for Cd, Pb and As, respectively. Pearson analysis showed that the GP and IP bioaccessibilities of these PHEs were mainly influenced by soil pH, CEC, and clay fraction and positively correlated with the sequential extraction form. The random forest regression (RF) model showed excellent performance in predicting the gastric phase (GP) bioaccessibilities of Cd, Pb, and As, with a mean R2 and RMSE of 0.86 and 0.31, respectively. Both the measured and predicted bioaccessibilities were feasible to be used to derive SEC. This work will contribute to the development of regional soil environmental standards based on bioaccessibility for Cd-, Pb-, and As-contaminated mining/smelting soils.


Assuntos
Arsênio , Poluentes do Solo , Cádmio/análise , Solo/química , Arsênio/análise , Chumbo/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos
3.
Kaohsiung J Med Sci ; 38(8): 781-789, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35467082

RESUMO

This study aims to discover the therapeutic effect of chemokine (CXC motif) receptor 4 (CXCR4) antagonist AMD3100 combined with transcatheter arterial chemoembolization (TACE) in a rat model with hepatocellular carcinoma (HCC). An orthotopic model of HCC was established and treated with TACE (doxorubicin-lipiodol emulsion) with or without AMD3100. The tumor volume was measured by magnetic resonance imaging (MRI). Histopathological changes were detected by hematoxylin-eosin (HE) staining. HCC cell apoptosis was assessed by terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) staining. Immunohistochemistry was used to detect the expression of CD34, hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and Ki67. Gene and protein expressions were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. Both TACE and AMD3100 reduced the tumor volume in orthotopic rat model of HCC with the decreased CXCR4 expression in tumor tissues, and the combination had better effect. However, TACE increased the microvessel density (MVD) in HCC tissues of rats, while AMD3100 treatment reduced MVD in HCC tissues. AMD3100 reduced the TACE induced MVD in HCC tissues with the reduction of HIF-1α and VEGF expression. Either AMD3100 or TACE could promote HCC cell apoptosis accompanying by decreased cell proliferation, and their combined use had better therapeutic effects. CXCR4 antagonist AMD3100 enhance therapeutic efficacy of TACE in rats with HCC via promoting the HCC cell apoptosis, reducing cell proliferation, and inhibiting MVD, thus reducing tumor volume.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Benzilaminas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Quimioembolização Terapêutica/métodos , Ciclamos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ratos , Receptores CXCR4/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
J Hazard Mater ; 433: 128797, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366440

RESUMO

Bioelectrochemical systems (BESs) with integrated photoactive components have been shown to be a promising strategy for enhancing the performance for bioenergy generation and pollutant removal. This study revealed an efficient photo-BES with an enhanced pollutant degradation rate by utilizing self-produced biomolecules as photosensitizers in situ. Results showed that the BES could increase the coulombic efficiency from 60.8% to 73.0% and the degradation rate of bisphenol A (BPA) from 0.030 to 0.189 h-1 when the suspension in the reactor was illuminated with simulated sunlight in the absence of any external photosensitizers. We identified that the regular BES released many organic substances into the reactor during operation. These substances, including dissolved biomolecules and solid cell residues, were photoactive for producing hydroxyl radicals during light illumination. Quenching experiments verified that the •OH generated from the self-produced biophotosensitizers contributed to the enhanced degradation of BPA. Additionally, the phototransformation of biophotosensitizers was also observed in photo-BES. The quantity of tyrosine protein-like components decreased, but that of the humic components remained relatively stable. Our findings imply that BESs with integrated self-produced biophotosensitizers may be promising for constructing advanced electrochemical and biological systems for synchronous bioelectricity production and degradation of organic pollutants in wastewater treatments.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Fármacos Fotossensibilizantes
5.
RSC Adv ; 12(18): 11039-11046, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35425063

RESUMO

Nano-sized biochar (NBC) has received increasing attention due to its unique physicochemical characteristics and environmental behaviour, but an understanding of its redox properties is limited. Herein, the redox properties of NBC derived from wheat straw were investigated at two pyrolysis temperatures (400 and 700 °C). These NBC materials were prepared from bulk-biochar by grinding, ultrasonication and separation treatments. The resulting NBC had average particle sizes of 78.8 ± 1.9 and 122.0 ± 2.1 nm after 400 and 700 °C treatments, respectively. The physicochemical measurements demonstrated that both the NBC prepared at 400 °C (NBC-400) and the NBC prepared at 700 °C (NBC-700) were enriched in carboxyl and phenolic oxygen-content groups. Electrochemical analyses showed that both NBC-400 and NBC-700 were redox active and had an electron transfer capacity (ETC) of 196.57 µmol-1 gC -1 and 363.47 µmol-1 gC -1, respectively. On the basis of its redox activity of NBC, the NBC was capable of mediating the reduction of iron and manganese minerals as well as the degradation of methyl orange (MO) by sulfide. The NBC-700 could stimulate these reactions better than the NBC-400 due to its higher redox activity. Meanwhile, the NBC was more active in stimulating these reactions than bulk-biochar. Our results highlight the importance of size in evaluating the redox reactivity of biochar and related environmental processes and improve our understanding of the redox properties of biochar.

6.
Water Res ; 208: 117875, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837813

RESUMO

Photochemical properties of dissolved organic matter (DOM) vary widely in natural and engineered water systems due to the different dominant compositions. However, seasonal patterns of DOM photochemical properties in urban rivers remain unclear. In this study, two seasons (wet and dry) of water samples were collected from eleven sites throughout the Pearl River (China) to investigate the spatiotemporal variability of DOM optical and photochemical properties. The optical properties of DOM in the Pearl River were characterized by UV-vis and fluorescence spectroscopies, which showed the substantial decrease in absorption coefficient and fluorescence intensity and increase in absorbence ratio (E2/E3) and specific absorption coefficient (SUVA) from the wet to dry season. The photochemical properties in terms of the apparent quantum yields of 3DOM*, 1O2 and ·OH from DOM (Φ3DOM*, Φ1O2 and Φ·OH, DOM) under illumination also displayed a significant decrease from the wet to the dry season. Spearman's rank correlation analysis revealed the strongest relationships between Φ3DOM*, Φ1O2 and Φ·OH, DOM and the relative abundance of microbial humic-like component (C2%) derived from parallel factor analysis (PARAFAC). Partial least squares regression (PLSR) modelling exhibited an excellent prediction strength for steady-state concentrations of 1O2 ([1O2]ss) and ·OH ([·OH]ss) with adjusted R2 values of 0.85 and 0.91, respectively, by using DOC concentration ([DOC]), optical properties, nitrate and nitrite concentrations as the response variables. In addition, the model identified that the Fmax of humic-like component C4 (Fmax-C4) was the most effective predictor amongst the used response variables. This study provides an approach to describe and predict the seasonal patterns of DOM photochemical properties in urbanized rivers, offering a good understanding of the formation mechanism of reactive species from river DOM.


Assuntos
Matéria Orgânica Dissolvida , Rios , China , Estações do Ano , Espectrometria de Fluorescência , Água
7.
Environ Sci Technol ; 55(22): 15090-15099, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34521203

RESUMO

Microbially derived extracellular polymeric substances (EPSs) occupy a large portion of dissolved organic matter (DOM) in surface waters, but the understanding of the photochemical behaviors of EPS is still very limited. In this study, the photochemical characteristics of EPS from different microbial sources (Shewanella oneidensis, Escherichia coli, and sewage sludge flocs) were investigated in terms of the production of reactive species (RS), such as triplet intermediates (3EPS*), hydroxyl radicals (•OH), and singlet oxygen (1O2). The steady-state concentrations of •OH, 3EPS*, and 1O2 varied in the ranges of 2.55-8.73 × 10-17, 3.01-4.56 × 10-15, and 2.08-2.66 × 10-13 M, respectively, which were within the range reported for DOM from other sources. The steady-state concentrations of RS varied among different EPS isolates due to the diversity of their composition. A strong photochemical degradation of the protein-like components in EPS isolates was identified by excitation emission matrix fluorescence with parallel factor analysis, but relatively, humic-like components remained stable. Fourier-transform ion cyclotron resonance mass spectrometry further revealed that the aliphatic portion of EPS was resistant to irradiation, while other portions with lower H/C ratios and higher O/C ratios were more susceptible to photolysis, leading to the phototransformation of EPS to higher saturation and lower aromaticity. With the phototransformation of EPS, the RS derived from EPS could effectively promote the degradation of antibiotic tetracycline. The findings of this study provide new insights into the photoinduced self-evolution of EPS and the interrelated photochemical fate of contaminants in the aquatic environment.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Radical Hidroxila , Fotólise , Shewanella
8.
Sci Total Environ ; 712: 136513, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931188

RESUMO

The performance of microbial electrochemical system for hexavalent chromium (Cr(VI)) contaminant has been a severe challenge remaining active for further development. In this study, we developed a novel biochar material from industrial paper sludge for microbial fuel cell cathode fabrication to reduce aquatic Cr(VI) to non-toxic Cr(III). With additive melamine as nitrogen source and self-containing small portion of Fe as catalyst, the sludge evolved into electroactive biochar (BC-M) rendering a unique N-doped carbon nanotubes/activated carbon (N-CNT/AC) frame after pyrolyzed at 900 °C for 2 h. Electrochemical analysis revealed enhanced electron transference capacity of this composite material, such effectiveness was attributed to the increased surface area and superior electroconductivity of N-doped CNTs. For performance of Cr(VI) reduction, a 55.1% reduction efficiency was achieved in an microbial fuel cell equipped with BC-M cathode while it reduced to about 41.8% when the cathode was replaced by electrode modified with no-melamine-involved biochar. The strategy of biochar upgrading from industrial paper sludge proposed in this work is expected to not only bring technical solution for low-cost CNT materials preparation for Cr(VI) reduction, but also put forward further research on value-added chemical synthesis from waste in various fields of energy and environment.


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono , Carvão Vegetal , Cromatos , Cromo , Oxirredução , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...