Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mater Chem A Mater ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39219708

RESUMO

Molecular solar thermal systems, which absorb light, store it, and release it as heat, have been extensively researched, yet many potential candidates remain unexplored. To expand this range, five specifically designed ortho-dianthrylbenzenes were investigated. Anthracene dimers have been underexplored due to issues like photooxidation and varying photodimerization efficiency. The presented systems address these challenges by aryl-linking two anthracene moieties, achieving photodimerization quantum yields ranging from 11.5% to 16% in mesitylene. The impact of donor or acceptor groups on energy storage time (9-37 years), energy storage density (0.14-0.2 MJ kg-1), and solar energy storage efficiency (0.38-0.66%) was evaluated. The experimental results, supported by density functional theory-based modeling, highlight the potential of anthracene-based photoswitches for molecular solar thermal applications and encourage further exploration of similar systems.

2.
J Chem Theory Comput ; 20(2): 937-945, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38164716

RESUMO

DNA-stabilized silver nanoclusters have emerged as an intriguing type of nanomaterial due to their unique optical and electronic properties, with potential applications in areas such as biosensing and imaging. The development of efficient methods for modeling these properties is paramount for furthering the understanding and utilization of these clusters. In this study, a hybrid quantum mechanical and molecular mechanical approach for modeling the optical properties of a DNA-templated silver nanocluster is evaluated. The influence of different parameters, including ligand fragmentation, damping, embedding potential, basis set, and density functional, is investigated. The results demonstrate that the most important parameter is the type of atomic properties used to represent the ligands, with isotropic dipole-dipole polarizabilities outperforming the rest. This underscores the importance of an appropriate representation of the ligands, particularly through the selection of the properties used to represent them. Moreover, the results are compared to experimental data, showing that the applied methodology is reliable and effective for the modeling of DNA-stabilized silver nanoclusters. These findings offer valuable insights that may guide future computational efforts to explore and harness the potential of these novel systems.


Assuntos
DNA , Prata , Simulação de Dinâmica Molecular
3.
Phys Chem Chem Phys ; 25(33): 21964-21969, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37554092

RESUMO

Solar energy conversion and storage are vital for combating climate change. Molecular solar thermal systems offer a promising solution, where energy is stored in molecular compounds. This study investigates dyad molecular photoswitches by combining bicyclooctadiene/tetracyclooctane and dihydroazulene/vinylheptafulvene systems with phenyl and cyano groups. Density functional theory calculations were employed to determine molecular properties and consider solvation effects in toluene and dichloromethane. The results show that the combined systems have a predicted storage energy of up to 206.14 kJ mol-1 and an absorption peak at 390.26 nm with appreciable intensity. These dyad photoswitches exhibit favorable properties for molecular solar thermal storage and other applications. A comparison with individual photoswitches reveals advantages and disadvantages. The most effective conjugate has a slightly lower storage density than an equal mixture of individual systems, but it demonstrates better absorption characteristics, with improved overlap with the solar spectrum and higher absorption intensity. These findings contribute to the understanding of dyad molecular photoswitches, showcasing their potential for advanced energy storage and conversion technologies.

4.
J Phys Chem Lett ; 14(25): 5727-5733, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37318362

RESUMO

This presentation considers the effects that DNA-templating has on the optical properties of a 16-atom silver cluster. To accomplish this, hybrid quantum mechanical and molecular mechanical simulations of a Ag16-DNA complex have been carried out and compared with pure time-dependent density functional theory calculations of two Ag16 clusters in vacuum. The presented results show that the templating DNA polymers both red-shift the one-photon absorption of the silver cluster and increase its intensity. This occurs through a change in cluster shape prompted by the structural constraints of the DNA ligands combined with silver-DNA interactions. The overall charge of the cluster also contributes to the observed optical response, as oxidation of the cluster results in a simultaneous blue-shift of the one-photon absorption and a decrease in intensity. Additionally, the changes in shape and environment also lead to a blue-shift and enhancement of the two-photon absorption.


Assuntos
DNA , Prata , Prata/química , DNA/química , Teoria da Densidade Funcional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA