Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
BMC Pulm Med ; 23(1): 301, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587413

RESUMO

BACKGROUND: The outcome of Veno-Venous Extracorporeal Membrane Oxygenation (VV-ECMO) in acute respiratory failure may be influenced by patient-related factors, center expertise and modalities of mechanical ventilation (MV) during ECMO. We determined, in a medium-size ECMO center in Switzerland, possible factors associated with mortality during VV-ECMO for acute respiratory failure of various etiologies. METHODS: We retrospectively analyzed all patients treated with VV-ECMO in our University Hospital from 2012 to 2019 (pre-COVID era). Demographic variables, severity scores, MV duration before ECMO, pre and on-ECMO arterial blood gases and respiratory variables were collected. The primary outcome was ICU mortality. Data were compared between survivors and non-survivors, and factors associated with mortality were assessed in univariate and multivariate analyses. RESULTS: Fifty-one patients (33 ARDS, 18 non-ARDS) were included. ICU survival was 49% (ARDS, 39%; non-ARDS 67%). In univariate analyses, a higher driving pressure (DP) at 24h and 48h on ECMO (whole population), longer MV duration before ECMO and higher DP at 24h on ECMO (ARDS patients), were associated with mortality. In multivariate analyses, ECMO indication, higher DP at 24h on ECMO and, in ARDS, longer MV duration before ECMO, were independently associated with mortality. CONCLUSIONS: DP on ECMO and longer MV duration before ECMO (in ARDS) are major, and potentially modifiable, factors influencing outcome during VV-ECMO.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Estudos Retrospectivos , Gasometria , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia
2.
J Clin Med ; 12(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37510837

RESUMO

Right ventricular failure (RVF) is often caused by increased afterload and disrupted coupling between the right ventricle (RV) and the pulmonary arteries (PAs). After a phase of adaptive hypertrophy, pressure-overloaded RVs evolve towards maladaptive hypertrophy and finally ventricular dilatation, with reduced stroke volume and systemic congestion. In this article, we review the concept of RV-PA coupling, which depicts the interaction between RV contractility and afterload, as well as the invasive and non-invasive techniques for its assessment. The current principles of RVF management based on pathophysiology and underlying etiology are subsequently discussed. Treatment strategies remain a challenge and range from fluid management and afterload reduction in moderate RVF to vasopressor therapy, inotropic support and, occasionally, mechanical circulatory support in severe RVF.

3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373119

RESUMO

Pulmonary hypertension (PH) associated with left heart diseases (PH-LHD), also termed group 2 PH, represents the most common form of PH. It develops through the passive backward transmission of elevated left heart pressures in the setting of heart failure, either with preserved (HFpEF) or reduced (HFrEF) ejection fraction, which increases the pulsatile afterload of the right ventricle (RV) by reducing pulmonary artery (PA) compliance. In a subset of patients, progressive remodeling of the pulmonary circulation resulted in a pre-capillary phenotype of PH, with elevated pulmonary vascular resistance (PVR) further increasing the RV afterload, eventually leading to RV-PA uncoupling and RV failure. The primary therapeutic objective in PH-LHD is to reduce left-sided pressures through the appropriate use of diuretics and guideline-directed medical therapies for heart failure. When pulmonary vascular remodeling is established, targeted therapies aiming to reduce PVR are theoretically appealing. So far, such targeted therapies have mostly failed to show significant positive effects in patients with PH-LHD, in contrast to their proven efficacy in other forms of pre-capillary PH. Whether such therapies may benefit some specific subgroups of patients (HFrEF, HFpEF) with specific hemodynamic phenotypes (post- or pre-capillary PH) and various degrees of RV dysfunction still needs to be addressed.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/terapia , Volume Sistólico , Circulação Pulmonar/fisiologia , Hemodinâmica
5.
Am J Transplant ; 23(8): 1130-1144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217006

RESUMO

Ex vivo lung perfusion (EVLP) may serve as a platform for the pharmacologic repair of lung grafts before transplantation (LTx). We hypothesized that EVLP could also permit nonpharmacologic repair through the induction of a heat shock response, which confers stress adaptation via the expression of heat shock proteins (HSPs). Therefore, we evaluated whether transient heat application during EVLP (thermal preconditioning [TP]) might recondition damaged lungs before LTx. TP was performed during EVLP (3 hours) of rat lungs damaged by warm ischemia by transiently heating (30 minutes, 41.5 °C) the EVLP perfusate, followed by LTx (2 hours) reperfusion. We also assessed the TP (30 minutes, 42 °C) during EVLP (4 hours) of swine lungs damaged by prolonged cold ischemia. In rat lungs, TP induced HSP expression, reduced nuclear factor κB and inflammasome activity, oxidative stress, epithelial injury, inflammatory cytokines, necroptotic death signaling, and the expression of genes involved in innate immune and cell death pathways. After LTx, heated lungs displayed reduced inflammation, edema, histologic damage, improved compliance, and unchanged oxygenation. In pig lungs, TP induced HSP expression, reduced oxidative stress, inflammation, epithelial damage, vascular resistance, and ameliorated compliance. Collectively, these data indicate that transient heat application during EVLP promotes significant reconditioning of damaged lungs and improves their outcomes after transplantation.


Assuntos
Transplante de Pulmão , Ratos , Suínos , Animais , Pulmão , Reperfusão , Resposta ao Choque Térmico , Inflamação/patologia , Perfusão
6.
Crit Care ; 27(1): 36, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691082

RESUMO

BACKGROUND: Hemoadsorption (HA) might mitigate the systemic inflammatory response associated with post-cardiac arrest syndrome (PCAS) and improve outcomes. Here, we investigated the feasibility, safety and efficacy of HA with CytoSorb® in cardiac arrest (CA) survivors at risk of PCAS. METHODS: In this pilot randomized controlled trial, we included patients admitted to our intensive care unit following CA and likely to develop PCAS: required norepinephrine (> 0.2 µg/kg/min), and/or had serum lactate > 6 mmol/l and/or a time-to-return of spontaneous circulation (ROSC) > 25 min. Those requiring ECMO or renal replacement therapy were excluded. Eligible patients were randomly allocated to either receive standard of care (SOC) or SOC plus HA. Hemoadsorption was performed as stand-alone therapy for 24 h, using CytoSorb® and regional heparin-protamine anticoagulation. We collected feasibility, safety and clinical data as well as serial plasma cytokines levels within 72 h of randomization. RESULTS: We enrolled 21 patients, of whom 16 (76%) had out-of-hospital CA. Median (IQR) time-to-ROSC was 30 (20, 45) minutes. Ten were assigned to the HA group and 11 to the SOC group. Hemoadsorption was initiated in all patients allocated to the HA group within 18 (11, 23) h of ICU admission and conducted for a median duration of 21 (14, 24) h. The intervention was well tolerated except for a trend for a higher rate of aPTT elevation (5 (50%) vs 2 (18%) p = 0.18) and mild (100-150 G/L) thrombocytopenia at day 1 (5 (50%) vs 2 (18%) p = 0.18). Interleukin (IL)-6 plasma levels at randomization were low (< 100 pg/mL) in 10 (48%) patients and elevated (> 1000 pg/mL) in 6 (29%). The median relative reduction in IL-6 at 48 h was 75% (60, 94) in the HA group versus 5% (- 47, 70) in the SOC group (p = 0.06). CONCLUSIONS: In CA survivors at risk of PCAS, HA was feasible, safe and was associated with a nonsignificant reduction in cytokine plasma levels. Future trials are needed to further define the role of HA after CA. Those studies should include cytokine assessment to enrich the study population. TRIAL REGISTRATION: NCT03523039, registered 14 May 2018.


Assuntos
Parada Cardíaca Extra-Hospitalar , Síndrome Pós-Parada Cardíaca , Humanos , Citocinas , Projetos Piloto , Interleucina-6 , Parada Cardíaca Extra-Hospitalar/induzido quimicamente
7.
Eur Radiol ; 33(5): 3627-3637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692594

RESUMO

OBJECTIVES: To evaluate the influence of vasoconstrictor agents (VCAs) on signs of vasoconstriction and bowel ischemia on MDCT detected in patients with non-occlusive mesenteric ischemia (NOMI). METHODS: This 8-year single-center retrospective study consecutively included all patients with histopathologically proven NOMI who underwent MDCT ≤ 48 h prior to surgical bowel resection. Two blinded radiologists jointly reviewed each examination for signs of bowel ischemia, abdominal organ infarct, mesenteric vessel size and regularity, and ancillary vascular findings. VCA administration (length and dosage), clinical and biochemical data, risk factors, and outcomes were retrieved from patients' medical records. Subgroup comparisons were performed. RESULTS: Ninety patients were included (59 males, mean age 65 years); 40 (44.4%) had received VCAs before MDCT. Overall mortality was 32% (n = 29), with no significant difference between the two groups. In patients treated with VCAs, the calibre of the superior mesenteric artery (SMA) was smaller (p = 0.032), and vasoconstriction of its branches tended to be more important (p = 0.096) than in patients not treated with VCAs. The presence and extent of bowel ischemia did not significantly correlate with VCA administration, but abdominal organ infarcts tended to be more frequent (p = 0.005) and involved more organs (p = 0.088). The VCA group had lower mean arterial pressure (p = 0.006) and lower hemoglobin levels (p < 0.001). Several biomarkers of organ failure and inflammation, differed significantly with VCA use, proving worse clinical condition. CONCLUSIONS: MDCT demonstrates more severe SMA vasoconstriction and tends to show increased abdominal organ infarcts after VCA administration in NOMI patients compared to NOMI patients not treated with VCAs. KEY POINTS: • In critically ill patients with NOMI, MDCT demonstrates VCA support via increased vasoconstriction of the main SMA and its branches. • VCA administration in NOMI patients tends to contribute to the development of organ infarcts, as shown on MDCT. • An important degree of vasoconstriction in NOMI patients may indicate insufficient resuscitation and, thus, help clinicians in further patient management.


Assuntos
Isquemia Mesentérica , Masculino , Humanos , Idoso , Isquemia Mesentérica/diagnóstico por imagem , Estudos Retrospectivos , Vasoconstritores/farmacologia , Vasoconstritores/uso terapêutico , Tomografia Computadorizada por Raios X , Isquemia/diagnóstico por imagem , Infarto
8.
Cells ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497049

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1), as a potential target for the experimental therapy of acute lung injury (ALI), was identified over 20 years ago. However, clinical translation of this concept was not possible due to the lack of clinically useful PARP inhibitors. With the clinical introduction of several novel, ultrapotent PARP inhibitors, the concept of PARP inhibitor repurposing has re-emerged. Here, we evaluated the effect of 5 clinical-stage PARP inhibitors in oxidatively stressed cultured human epithelial cells and monocytes in vitro and demonstrated that all inhibitors (1-30 µM) provide a comparable degree of cytoprotection. Subsequent in vivo studies using a murine model of ALI compared the efficacy of olaparib and rucaparib. Both inhibitors (1-10 mg/kg) provided beneficial effects against lung extravasation and pro-inflammatory mediator production-both in pre- and post-treatment paradigms. The underlying mechanisms include protection against cell dysfunction/necrosis, inhibition of NF-kB and caspase 3 activation, suppression of the NLRP3 inflammasome, and the modulation of pro-inflammatory mediators. Importantly, the efficacy of PARP inhibitors was demonstrated without any potentiation of DNA damage, at least as assessed by the TUNEL method. These results support the concept that clinically approved PARP inhibitors may be repurposable for the experimental therapy of ALI.


Assuntos
Lesão Pulmonar Aguda , Inibidores de Poli(ADP-Ribose) Polimerases , Camundongos , Humanos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Modelos Animais de Doenças , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão , Mediadores da Inflamação/farmacologia , Necrose
9.
Respir Res ; 23(1): 320, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402990

RESUMO

BACKGROUND: COVID-19 related acute respiratory distress syndrome (ARDS) has specific characteristics compared to ARDS in other populations. Proning is recommended by analogy with other forms of ARDS, but few data are available regarding its physiological effects in this population. This study aimed to assess the effects of proning on oxygenation parameters (PaO2/FiO2 and alveolo-arterial gradient (Aa-gradient)), blood gas analysis, ventilatory ratio (VR), respiratory system compliance (CRS) and estimated dead space fraction (VD/VT HB). We also looked for variables associated with treatment failure. METHODS: Retrospective monocentric study of intubated COVID-19 ARDS patients managed with an early intubation, low to moderate positive end-expiratory pressure and early proning strategy hospitalized from March 6 to April 30 2020. Blood gas analysis, PaO2/FiO2, Aa-gradient, VR, CRS and VD/VT HB were compared before and at the end of each proning session with paired t-tests or Wilcoxon tests (p < 0.05 considered as significant). Proportions were assessed using Fischer exact test or Chi square test. RESULTS: Forty-two patients were included for a total of 191 proning sessions, median duration of 16 (5-36) hours. Considering all sessions, PaO2/FiO2 increased (180 [148-210] vs 107 [90-129] mmHg, p < 0.001) and Aa-gradient decreased (127 [92-176] vs 275 [211-334] mmHg, p < 0.001) with proning. CRS (36.2 [30.0-41.8] vs 32.2 [27.5-40.9] ml/cmH2O, p = 0.003), VR (2.4 [2.0-2.9] vs 2.3 [1.9-2.8], p = 0.028) and VD/VT HB (0.72 [0.67-0.76] vs 0.71 [0.65-0.76], p = 0.022) slightly increased. Considering the first proning session, PaO2/FiO2 increased (186 [165-215] vs 104 [94-126] mmHg, p < 0.001) and Aa-gradient decreased (121 [89-160] vs 276 [238-321] mmHg, p < 0.001), while CRS, VR and VD/VT HB were unchanged. Similar variations were observed during the subsequent proning sessions. Among the patients who experienced treatment failure (defined as ICU death or need for extracorporeal membrane oxygenation), fewer expressed a positive response in terms of oxygenation (defined as increase of more than 20% in PaO2/FiO2) to the first proning (67 vs 97%, p = 0.020). CONCLUSION: Proning in COVID-19 ARDS intubated patients led to an increase in PaO2/FiO2 and a decrease in Aa-gradient if we consider all the sessions together, the first one or the 4 subsequent sessions independently. When considering all sessions, CRS increased and VR and VD/VT HB only slightly increased.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Adulto , Estudos Retrospectivos , Decúbito Ventral , Respiração Artificial , COVID-19/terapia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia
10.
J Clin Med ; 11(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36362635

RESUMO

Vasoplegic syndrome (VS) is a common complication following cardiovascular surgery with cardiopulmonary bypass (CPB), and its incidence varies from 5 to 44%. It is defined as a distributive form of shock due to a significant drop in vascular resistance after CPB. Risk factors of VS include heart failure with low ejection fraction, renal failure, pre-operative use of angiotensin-converting enzyme inhibitors, prolonged aortic cross-clamp and left ventricular assist device surgery. The pathophysiology of VS after CPB is multi-factorial. Surgical trauma, exposure to the elements of the CPB circuit and ischemia-reperfusion promote a systemic inflammatory response with the release of cytokines (IL-1ß, IL-6, IL-8, and TNF-α) with vasodilating properties, both direct and indirect through the expression of inducible nitric oxide (NO) synthase. The resulting increase in NO production fosters a decrease in vascular resistance and a reduced responsiveness to vasopressor agents. Further mechanisms of vasodilation include the lowering of plasma vasopressin, the desensitization of adrenergic receptors, and the activation of ATP-dependent potassium (KATP) channels. Patients developing VS experience more complications and have increased mortality. Management includes primarily fluid resuscitation and conventional vasopressors (catecholamines and vasopressin), while alternative vasopressors (angiotensin 2, methylene blue, hydroxocobalamin) and anti-inflammatory strategies (corticosteroids) may be used as a rescue therapy in deteriorating patients, albeit with insufficient evidence to provide any strong recommendation. In this review, we present an update of the pathophysiological mechanisms of vasoplegic syndrome complicating CPB and discuss available therapeutic options.

11.
Transplant Direct ; 8(7): e1337, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35702630

RESUMO

Background: Ex vivo lung perfusion (EVLP) may allow therapeutic reconditioning of damaged lung grafts before transplantation. This study aimed to develop relevant rat models of lung damage to study EVLP therapeutic reconditioning for possible translational applications. Methods: Lungs from 31 rats were exposed to cold ischemia (CI) or warm ischemia (WI), inflated at various oxygen fractions (FiO2), followed by 3 h EVLP. Five groups were studied as follow: (1) C21 (control): 3 h CI (FiO2 0.21); (2) C50: 3 h CI (FiO2 0.5); (3) W21: 1 h WI, followed by 2 h CI (FiO2 0.21); (4) W50: 1 h WI, followed by 2 h CI (FiO2 0.5); and (5) W2h: 2 h WI, followed by 1 h CI (FiO2 0.21). Following 3 h EVLP, we measured static pulmonary compliance (SPC), pulmonary vascular resistance, lung weight gain (edema), oxygenation capacity (differential partial pressure of oxygen), and protein carbonyls in lung tissue (oxidative stress), as well as lactate dehydrogenase (LDH, lung injury), nitrotyrosine (nitro-oxidative stress), interleukin-6 (IL-6, inflammation), and proteins (permeability edema) in bronchoalveolar lavage (BAL). Perivascular edema was quantified by histology. Results: No significant alterations were noted in C21 and C50 groups. W21 and W50 groups had reduced SPC and disclosed increased weight gain, BAL proteins, nitrotyrosine, and LDH. These changes were more severe in the W50 group, which also displayed greater oxidative stress. In contrast, both W21 and W50 showed comparable perivascular edema and BAL IL-6. In comparison with the other WI groups, W2h showed major weight gain, perivascular edema, SPC reduction, drop of differential partial pressure of oxygen, and massive increases of BAL LDH and proteins but comparable increase of IL-6 and biomarkers of oxidative stress. Conclusions: These models of lung damage of increasing severity might be helpful to evaluate new strategies for EVLP therapeutic reconditioning. A model combining 1 h WI and inflation at FiO2 of 0.5 seems best suited for this purpose by reproducing major alterations of clinical lung ischemia-reperfusion injury.

12.
Neurocrit Care ; 37(1): 293-301, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534658

RESUMO

BACKGROUND: According to international guidelines, neuroprognostication in comatose patients after cardiac arrest (CA) is performed using a multimodal approach. However, patients undergoing extracorporeal membrane oxygenation (ECMO) may have longer pharmacological sedation and show alteration in biological markers, potentially challenging prognostication. Here, we aimed to assess whether routinely used predictors of poor neurological outcome also exert an acceptable performance in patients undergoing ECMO after CA. METHODS: This observational retrospective study of our registry includes consecutive comatose adults after CA. Patients deceased within 36 h and not undergoing prognostic tests were excluded. Veno-arterial ECMO was initiated in patients < 80 years old presenting a refractory CA, with a no flow < 5 min and a low flow ≤ 60 min on admission. Neuroprognostication test performance (including pupillary reflex, electroencephalogram, somatosensory-evoked potentials, neuron-specific enolase) toward mortality and poor functional outcome (Cerebral Performance Categories [CPC] score 3-5) was compared between patients undergoing ECMO and those without ECMO. RESULTS: We analyzed 397 patients without ECMO and 50 undergoing ECMO. The median age was 65 (interquartile range 54-74), and 69.8% of patients were men. Most had a cardiac etiology (67.6%); 52% of the patients had a shockable rhythm, and the median time to return of an effective circulation was 20 (interquartile range 10-28) minutes. Compared with those without ECMO, patients receiving ECMO had worse functional outcome (74% with CPC scores 3-5 vs. 59%, p = 0.040) and a nonsignificant higher mortality (60% vs. 47%, p = 0.080). Apart from the neuron-specific enolase level (higher in patients with ECMO, p < 0.001), the presence of prognostic items (pupillary reflex, electroencephalogram background and reactivity, somatosensory-evoked potentials, and myoclonus) related to unfavorable outcome (CPC score 3-5) in both groups was similar, as was the prevalence of at least any two such items concomitantly. The specificity of each these variables toward poor outcome was between 92 and 100% in both groups, and of the combination of at least two items, it was 99.3% in patients without ECMO and 100% in those with ECMO. The predictive performance (receiver operating characteristic curve) of their combination toward poor outcome was 0.822 (patients without ECMO) and 0.681 (patients with ECMO) (p = 0.134). CONCLUSIONS: Pending a prospective assessment on a larger cohort, in comatose patients after CA, the performance of prognostic factors seems comparable in patients with ECMO and those without ECMO. In particular, the combination of at least two poor outcome criteria appears valid across these two groups.


Assuntos
Encéfalo , Coma , Oxigenação por Membrana Extracorpórea , Parada Cardíaca , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Coma/etiologia , Coma/fisiopatologia , Coma/terapia , Eletroencefalografia , Feminino , Parada Cardíaca/complicações , Humanos , Masculino , Fosfopiruvato Hidratase/metabolismo , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos
13.
ASAIO J ; 68(4): e69-e72, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039885

RESUMO

The implantation of left ventricular assist devices (LVADs) in patients with end-stage heart failure can be associated with some forms of immune dysregulation and systemic inflammatory response. These abnormalities may be related to impaired T-lymphocyte-dependent immunity and B-lymphocyte hyper-reactivity and may lead to the development of autoimmune processes and the occurrence of severe infections. We present here the first observation of a peculiar immune complication associated with the implantation of an LVAD, characterized by an IgA vasculitis clinically manifested as Henoch-Schönlein purpura. The vasculitis was biologically associated with a significant increase of the plasma levels of C-X-C motif chemokine ligand (CXCL)13, a CXC motif chemokine produced by follicular dendritic cells, which targets CXCR5, a receptor primarily expressed by B lymphocytes, to promote their chemotaxis and expansion. Spontaneous resolution of the vasculitis occurred over time, concomitantly to a decrease of CXCL13 expression. These findings suggest that CXCL13 might be an interesting biomarker to detect auto-antigen sampling and the risk of secondary immune complications following LVAD implantation.


Assuntos
Coração Auxiliar , Vasculite por IgA , Vasculite , Biomarcadores , Coração Auxiliar/efeitos adversos , Humanos , Vasculite por IgA/complicações , Imunoglobulina A , Vasculite/etiologia
14.
Front Cardiovasc Med ; 8: 752088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765658

RESUMO

Characterizing left ventricle (LV) systolic function in the presence of an LV assist device (LVAD) is extremely challenging. We developed a framework comprising a deep neural network (DNN) and a 0D model of the cardiovascular system to predict parameters of LV systolic function. DNN input data were systemic and pulmonary arterial pressure signals, and rotation speeds of the device. Output data were parameters of LV systolic function, including end-systolic maximal elastance (E max,lv ), a variable essential for adequate hemodynamic assessment of the LV. A 0D model of the cardiovascular system, including a wide range of LVAD settings and incorporating the whole spectrum of heart failure, was used to generate data for the training procedure of the DNN. The DNN predicted E max,lv with a mean relative error of 10.1%, and all other parameters of LV function with a mean relative error of <13%. The framework was then able to retrieve a number of LV physiological variables (i.e., pressures, volumes, and ejection fraction) with a mean relative error of <5%. Our method provides an innovative tool to assess LV hemodynamics under device assistance, which could be helpful for a better understanding of LV-LVAD interactions, and for therapeutic optimization.

15.
BMC Cardiovasc Disord ; 21(1): 542, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775951

RESUMO

BACKGROUND: High levels of arterial oxygen pressures (PaO2) have been associated with increased mortality in extracorporeal cardiopulmonary resuscitation (ECPR), but there is limited information regarding possible mechanisms linking hyperoxia and death in this setting, notably with respect to its hemodynamic consequences. We aimed therefore at evaluating a possible association between PaO2, circulatory failure and death during ECPR. METHODS: We retrospectively analyzed 44 consecutive cardiac arrest (CA) patients treated with ECPR to determine the association between the mean PaO2 over the first 24 h, arterial blood pressure, vasopressor and intravenous fluid therapies, mortality, and cause of deaths. RESULTS: Eleven patients (25%) survived to hospital discharge. The main causes of death were refractory circulatory shock (46%) and neurological damage (24%). Compared to survivors, non survivors had significantly higher mean 24 h PaO2 (306 ± 121 mmHg vs 164 ± 53 mmHg, p < 0.001), lower mean blood pressure and higher requirements in vasopressors and fluids, but displayed similar pulse pressure during the first 24 h (an index of native cardiac recovery). The mean 24 h PaO2 was significantly and positively correlated with the severity of hypotension and the intensity of vasoactive therapies. Patients dying from circulatory failure died after a median of 17 h, compared to a median of 58 h for patients dying from a neurological cause. Patients dying from neurological cause had better preserved blood pressure and lower vasopressor requirements. CONCLUSION: In conclusion, hyperoxia is associated with increased mortality during ECPR, possibly by promoting circulatory collapse or delayed neurological damage.


Assuntos
Reanimação Cardiopulmonar/efeitos adversos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Parada Cardíaca/complicações , Hiperóxia/etiologia , Choque/etiologia , Feminino , Parada Cardíaca/mortalidade , Parada Cardíaca/terapia , Mortalidade Hospitalar , Humanos , Hiperóxia/mortalidade , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estudos Retrospectivos
16.
Crit Care ; 25(1): 318, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461974

RESUMO

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2021. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2021 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .


Assuntos
Artérias/fisiopatologia , Dióxido de Carbono/análise , Veias/fisiopatologia , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Prognóstico
17.
J Heart Lung Transplant ; 40(9): 905-916, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34193360

RESUMO

BACKGROUND: Lung transplantation (LTx) is associated with sterile inflammation, possibly related to the release of damage associated molecular patterns (DAMPs) by injured allograft cells. We have measured cellular damage and the release of DAMPs and cytokines in an experimental model of LTx after cold or warm ischemia and examined the effect of pretreatment with ex-vivo lung perfusion (EVLP). METHODS: Rat lungs were exposed to cold ischemia alone (CI group) or with 3h EVLP (CI-E group), warm ischemia alone (WI group) or with 3 hour EVLP (WI-E group), followed by LTx (2 hour). Bronchoalveolar lavage (BAL) was performed before (right lung) or after (left lung) LTx to measure LDH (marker of cellular injury), the DAMPs HMGB1, IL-33, HSP-70 and S100A8, and the cytokines IL-1ß, IL-6, TNFα, and CXCL-1. Graft oxygenation capacity and static compliance after LTx were also determined. RESULTS: Compared to CI, WI displayed cellular damage and inflammation without any increase of DAMPs after ischemia alone, but with a significant increase of HMGB1 and functional impairment after LTx. EVLP promoted significant inflammation in both cold (CI-E) and warm (WI-E) groups, which was not associated with cell death or DAMP release at the end of EVLP, but with the release of S100A8 after LTx. EVLP reduced graft damage and dysfunction in warm ischemic, but not cold ischemic, lungs. CONCLUSIONS: The pathomechanisms of sterile lung inflammation during LTx are significantly dependent on the conditions. The release of HMGB1 (in the absence of EVLP) and S100A8 (following EVLP) may be important factors in the pathogenesis of LTx.


Assuntos
Isquemia Fria/métodos , Citocinas/metabolismo , Circulação Extracorpórea/métodos , Inflamação/metabolismo , Transplante de Pulmão , Perfusão/métodos , Isquemia Quente/métodos , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Inflamação/etiologia , Pulmão/metabolismo , Preservação de Órgãos/métodos , Ratos , Ratos Sprague-Dawley , Doadores de Tecidos
18.
J Clin Med ; 10(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34200990

RESUMO

Infection with the novel severe acute respiratory coronavirus-2 (SARS-CoV2) results in COVID-19, a disease primarily affecting the respiratory system to provoke a spectrum of clinical manifestations, the most severe being acute respiratory distress syndrome (ARDS). A significant proportion of COVID-19 patients also develop various cardiac complications, among which dysfunction of the right ventricle (RV) appears particularly common, especially in severe forms of the disease, and which is associated with a dismal prognosis. Echocardiographic studies indeed reveal right ventricular dysfunction in up to 40% of patients, a proportion even greater when the RV is explored with strain imaging echocardiography. The pathophysiological mechanisms of RV dysfunction in COVID-19 include processes increasing the pulmonary vascular hydraulic load and others reducing RV contractility, which precipitate the acute uncoupling of the RV with the pulmonary circulation. Understanding these mechanisms provides the fundamental basis for the adequate therapeutic management of RV dysfunction, which incorporates protective mechanical ventilation, the prevention and treatment of pulmonary vasoconstriction and thrombotic complications, as well as the appropriate management of RV preload and contractility. This comprehensive review provides a detailed update of the evidence of RV dysfunction in COVID-19, its pathophysiological mechanisms, and its therapy.

19.
ESC Heart Fail ; 8(2): 1637-1642, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33630406

RESUMO

Adult patients with uncorrected congenital heart diseases and chronic intracardiac shunt may develop Eisenmenger syndrome (ES) due to progressive increase of pulmonary vascular resistance, with significant morbidity and mortality. Acute decompensation of ES in conditions promoting a further increase of pulmonary vascular resistance, such as pulmonary embolism or pneumonia, can precipitate major arterial hypoxia and death. In such conditions, increasing systemic oxygenation with veno-venous extracorporeal membrane oxygenation (VV-ECMO) could be life-saving, serving as a bridge to treat a potential reversible cause for the decompensation, or to urgent lung transplantation. Anticipating the effects of VV-ECMO in this setting could ease the clinical decision to initiate such therapeutic strategy. Here, we present a series of equations to accurately predict the effects of VV-ECMO on arterial oxygenation in ES and illustrate this point by a case of ES decompensation with refractory hypoxaemia consecutive to an acute respiratory failure due to viral pneumonia.


Assuntos
Complexo de Eisenmenger , Oxigenação por Membrana Extracorpórea , Pneumonia Viral , Síndrome do Desconforto Respiratório , Adulto , Complexo de Eisenmenger/complicações , Complexo de Eisenmenger/diagnóstico , Complexo de Eisenmenger/terapia , Humanos
20.
Nat Rev Cardiol ; 18(2): 117-135, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32999450

RESUMO

The liver is a crucial metabolic organ that has a key role in maintaining immune and endocrine homeostasis. Accumulating evidence suggests that chronic liver disease might promote the development of various cardiac disorders (such as arrhythmias and cardiomyopathy) and circulatory complications (including systemic, splanchnic and pulmonary complications), which can eventually culminate in clinical conditions ranging from portal and pulmonary hypertension to pulmonary, cardiac and renal failure, ascites and encephalopathy. Liver diseases can affect cardiovascular function during the early stages of disease progression. The development of cardiovascular diseases in patients with chronic liver failure is associated with increased morbidity and mortality, and cardiovascular complications can in turn affect liver function and liver disease progression. Furthermore, numerous infectious, inflammatory, metabolic and genetic diseases, as well as alcohol abuse can also influence both hepatic and cardiovascular outcomes. In this Review, we highlight how chronic liver diseases and associated cardiovascular effects can influence different organ pathologies. Furthermore, we explore the potential roles of inflammation, oxidative stress, vasoactive mediator imbalance, dysregulated endocannabinoid and autonomic nervous systems and endothelial dysfunction in mediating the complex interplay between the liver and the systemic vasculature that results in the development of the extrahepatic complications of chronic liver disease. The roles of ageing, sex, the gut microbiome and organ transplantation in this complex interplay are also discussed.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Inflamação , Hepatopatias/fisiopatologia , Estresse Oxidativo , Doenças Cardiovasculares/complicações , Doença Crônica , Humanos , Inflamação/fisiopatologia , Hepatopatias/complicações , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...