Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(41): 26034-26052, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324205

RESUMO

Is it possible to convert highly specialized research in the field of computational spectroscopy into robust and user-friendly aids to experiments and industrial applications? What kind of tools should be created to increase the interactions between researchers with different backgrounds and push towards new frontiers in computational chemistry? The outstanding advances in computational spectroscopy and the wide availability of computational and analytical tools are paving the route toward the study of problems that were previously difficult or impossible to solve and enable the imagination of even more ambitious targets for fundamental and applied research. The combination of new computer- and data-centric technologies is transforming data analysis from an uncommon and retrospective practice into a proactive process of strategic decision and action. This paper starts from these premises and proposes a perspective for a new cyberinfrastructure aimed at integrating developments in theory, algorithms and software with new tools for workflow management, data mining and visualization. We make a case for this approach by means of a few examples that deal with unmanageable types of data in molecular modelling and results obtained using different unsupervised learning algorithms.

2.
J Chem Theory Comput ; 13(9): 4382-4396, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28742339

RESUMO

The Virtual Multifrequency Spectrometer (VMS) is a tool that aims at integrating a wide range of computational and experimental spectroscopic techniques with the final goal of disclosing the static and dynamic physical-chemical properties "hidden" in molecular spectra. VMS is composed of two parts, namely, VMS-Comp, which provides access to the latest developments in the field of computational spectroscopy, and VMS-Draw, which provides a powerful graphical user interface (GUI) for an intuitive interpretation of theoretical outcomes and a direct comparison to experiment. In the present work, we introduce VMS-ROT, a new module of VMS that has been specifically designed to deal with rotational spectroscopy. This module offers an integrated environment for the analysis of rotational spectra: from the assignment of spectral transitions to the refinement of spectroscopic parameters and the simulation of the spectrum. While bridging theoretical and experimental rotational spectroscopy, VMS-ROT is strongly integrated with quantum-chemical calculations, and it is composed of four independent, yet interacting units: (1) the computational engine for the calculation of the spectroscopic parameters that are employed as a starting point for guiding experiments and for the spectral interpretation, (2) the fitting-prediction engine for the refinement of the molecular parameters on the basis of the assigned transitions and the prediction of the rotational spectrum of the target molecule, (3) the GUI module that offers a powerful set of tools for a vis-à-vis comparison between experimental and simulated spectra, and (4) the new assignment tool for the assignment of experimental transitions in terms of quantum numbers upon comparison with the simulated ones. The implementation and the main features of VMS-ROT are presented, and the software is validated by means of selected test cases ranging from isolated molecules of different sizes to molecular complexes. VMS-ROT therefore offers an integrated environment for the analysis of the rotational spectra, with the innovative perspective of an intimate connection to quantum-chemical calculations that can be exploited at different levels of refinement, as an invaluable support and complement for experimental studies.

3.
J Chem Theory Comput ; 13(5): 2215-2229, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28402672

RESUMO

We present the implementation of the solid state (SoS)NMR module for the simulation of several 1D and 2D NMR spectra of all the elements in the periodic table in the virtual multifrequency spectrometer (VMS). This module is fully integrated with the graphical user interface of VMS (VMS-Draw) [Licari et al., J. Comput. Chem. 36, 2015, 321-334], a freeware tool which allows a user-friendly handling of structures and analyses of advanced spectroscopical properties of chemical compounds-from model systems to real-world applications. Besides the numerous modules already available in VMS for the study of electronic, optical, vibrational, vibronic, and EPR properties, here the simulation of NMR spectra is presented with a particular emphasis on those techniques usually employed to investigate solid state systems. The SoSNMR module benefits from its ability to work under both periodic and nonperiodic conditions, such that small molecules/molecular clusters can be treated, as well as extended three-dimensional systems enforcing (or not) translational periodicity. These features allow VMS to simulate spectra resulting from NMR calculations by some popular quantum chemistry codes, namely Gaussian09/16, Castep, and Quantum Espresso. The effectiveness of the SoSNMR module of VMS is examined throughout the manuscript, and applied to simulate 1D static, MAS, and VAS NMR spectra as well as 2D correlation (90°, MAS) and MQMAS spectra of active NMR nuclei embedded in different amorphous and crystalline systems of actual interest in chemistry and material science. Finally, the program is able to simulate the spectra of both the total ensemble of spin-active nuclei present in the system and of subensembles differentiated depending on the chemical environment of the first and second coordination sphere in a very general way applicable to any kind of systems.

4.
J Chem Theory Comput ; 13(6): 3060-3075, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28437115

RESUMO

The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail. The software, which is interfaced with a powerful graphical user interface, includes different optimization algorithms, an extended error analysis, and a number of advanced features, the most remarkable ones concerning the choice of internal coordinates and the method of predicate observations. In particular, a new black-box scheme for defining automatically a suitable set of nonredundant internal coordinates of A1 symmetry in place of the customary Z-matrix has been designed and tested. Finally, the implementation of the method of the predicate observations is discussed and validated for a set of test molecules. As an original application, the method is employed for the determination of the semiexperimental structure for the most stable conformer of glycine.


Assuntos
Modelos Moleculares , Software , Gráficos por Computador , Conformação Molecular , Teoria Quântica , Interface Usuário-Computador
5.
J Comput Chem ; 36(5): 321-34, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25408126

RESUMO

This article presents the setup and implementation of a graphical user interface (VMS-Draw) for a virtual multifrequency spectrometer. Special attention is paid to ease of use, generality and robustness for a panel of spectroscopic techniques and quantum mechanical approaches. Depending on the kind of data to be analyzed, VMS-Draw produces different types of graphical representations, including two-dimensional or three-dimesional (3D) plots, bar charts, or heat maps. Among other integrated features, one may quote the convolution of stick spectra to obtain realistic line-shapes. It is also possible to analyze and visualize, together with the structure, the molecular orbitals and/or the vibrational motions of molecular systems thanks to 3D interactive tools. On these grounds, VMS-Draw could represent a useful additional tool for spectroscopic studies integrating measurements and computer simulations.

6.
Phys Chem Chem Phys ; 16(7): 2897-911, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24424261

RESUMO

An integrated computational approach allowed an unbiased analysis of optical and structural properties of alizarin-based pigments, which can be directly compared with experimental results. Madder lake pigments have been modeled by Mg(II)- and Al(III)-coordinated alizarin taking into account solvation and metal-linkage effects, responsible for colour modifications. Moreover, different environmental conditions have been analyzed for free alizarin, showing in all cases semi-quantitative agreement with experimental spectroscopic data (UV-VIS). Our results point out the ability of in silico approaches to unravel the subtle interplay of stereo-electronic, dynamic, and environmental effects in tuning the physico-chemical properties of pigments relevant to cultural heritage.

7.
Phys Chem Chem Phys ; 15(11): 3736-51, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23389748

RESUMO

The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.


Assuntos
Teoria Quântica , Software , Compostos de Bifenilo/química , Internet , Simulação de Dinâmica Molecular , Peróxidos/química , Pirimidinas/química , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...