Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Diabetes ; 72(10): 1470-1482, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494666

RESUMO

Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS: Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1 , Lactococcus lactis , MicroRNAs , Humanos , Animais , Camundongos , Diabetes Mellitus Tipo 1/terapia , Interleucina-10 , Lactococcus lactis/genética , Proinsulina/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Biomarcadores , Camundongos Endogâmicos NOD , Imunoterapia
2.
Diabetes Metab Res Rev ; 39(8): e3696, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466955

RESUMO

AIMS: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptidil Dipeptidase A
3.
Diabetologia ; 66(2): 354-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280617

RESUMO

AIMS/HYPOTHESIS: Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. METHODS: In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. RESULTS: We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. CONCLUSIONS/INTERPRETATION: Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Estresse do Retículo Endoplasmático/genética , Glucose/metabolismo
4.
Front Oncol ; 12: 912639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847919

RESUMO

A growing body of evidence supports the notion that the gut microbiome plays an important role in cancer immunity. However, the underpinning mechanisms remain to be fully elucidated. One attractive hypothesis envisages that among the T cells elicited by the plethora of microbiome proteins a few exist that incidentally recognize neo-epitopes arising from cancer mutations ("molecular mimicry (MM)" hypothesis). To support MM, the human probiotic Escherichia coli Nissle was engineered with the SIINFEKL epitope (OVA-E.coli Nissle) and orally administered to C57BL/6 mice. The treatment with OVA-E.coli Nissle, but not with wild type E. coli Nissle, induced OVA-specific CD8+ T cells and inhibited the growth of tumors in mice challenged with B16F10 melanoma cells expressing OVA. The microbiome shotgun sequencing and the sequencing of TCRs from T cells recovered from both lamina propria and tumors provide evidence that the main mechanism of tumor inhibition is mediated by the elicitation at the intestinal site of cross-reacting T cells, which subsequently reach the tumor environment. Importantly, the administration of Outer Membrane Vesicles (OMVs) from engineered E. coli Nissle, as well as from E. coli BL21(DE3)ΔompA, carrying cancer-specific T cell epitopes also elicited epitope-specific T cells in the intestine and inhibited tumor growth. Overall, our data strengthen the important role of MM in tumor immunity and assign a novel function of OMVs in host-pathogen interaction. Moreover, our results pave the way to the exploitation of probiotics and OMVs engineered with tumor specific-antigens as personalized mucosal cancer vaccines.

5.
Cell Death Discov ; 8(1): 340, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906204

RESUMO

The loss of functional ß-cell mass in type 2 diabetes (T2D) is associated with molecular events that include ß-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several ß-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated. Here, we show reduced miR-184-3p levels in human T2D pancreatic islets, whereas its direct target CREB regulated transcription coactivator 1 (CRTC1) was increased and protects ß-cells from lipotoxicity- and inflammation-induced apoptosis. Downregulation of miR-184-3p in ß-cells leads to upregulation of CRTC1 at both the mRNA and protein levels. Remarkably, the protective effect of miR-184-3p is dependent on CRTC1, as its silencing in human ß-cells abrogates the protective mechanism mediated by inhibition of miR-184-3p. Furthermore, in accordance with miR-184-3p downregulation, we also found that the ß-cell-specific transcription factor NKX6.1, DNA-binding sites of which are predicted in the promoter sequence of human and mouse MIR184 gene, is reduced in human pancreatic T2D islets. Using chromatin immunoprecipitation analysis and mRNA silencing experiments, we demonstrated that NKX6.1 directly controls both human and murine miR-184 expression. In summary, we provide evidence that the decrease in NKX6.1 expression is accompanied by a significant reduction in miR-184-3p expression and that reduction of miR-184-3p protects ß-cells from apoptosis through a CRTC1-dependent mechanism.

6.
Cell Death Dis ; 13(5): 476, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589698

RESUMO

The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in ß-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic ß-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous ß-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice. Therefore, NIK has been proposed as a potential target for diabetes therapy. However, no clear studies showed whether inhibition of NIK improves diabetes development. Here we show that genetic silencing of NIK in pancreatic ß-cells neither modifies diabetes incidence nor inflammatory responses in a mouse model of immune-mediated diabetes. Moreover, NIK silencing in DIO mice did not influence body weight gain, nor glucose metabolism. In vitro studies corroborated the in vivo findings in terms of ß-cell survival, function, and downstream gene regulation. Taken together, our data suggest that NIK activation is dispensable for the development of diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Animais , Diabetes Mellitus/patologia , Células Secretoras de Insulina/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Quinase Induzida por NF-kappaB
7.
Front Immunol ; 13: 833141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359976

RESUMO

The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic ß-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and ß-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells.


Assuntos
Diabetes Mellitus Tipo 1 , Células Endócrinas , Células Secretoras de Glucagon , Ilhotas Pancreáticas , Autoanticorpos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endócrinas/metabolismo , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Doadores de Tecidos
8.
Transl Res ; 247: 137-157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35351622

RESUMO

Type 2 diabetes (T2D), a chronic metabolic disease, has attained the status of a global epidemic with steadily increasing incidence worldwide. Improved diagnosis, stratification and prognosis of T2D patients and the development of more effective treatments are needed. In this era of personalized medicine, the discovery and evaluation of innovative circulating biomarkers can be an effective tool for better stratification, prognosis and therapeutic selection/management of T2D patients. MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression, have been investigated as potential circulating biomarkers in T2D. Several studies have investigated the expression of circulating miRNAs in T2D patients from various biological fluids, including plasma and serum, and have demonstrated their potential as diagnostic and prognostic biomarkers, as well as biomarkers of response to therapy. In this review, we provide an overview of the current state of knowledge, focusing on circulating miRNAs that have been consistently expressed in at least two independent studies, in order to identify a set of consistent biomarker candidates in T2D. The expression levels of miRNAs, correlation with clinical parameters, functional roles of miRNAs and their potential as biomarkers are reported. A systematic literature search and assessment of studies led to the selection and review of 10 miRNAs (miR-126-3p, miR-223-3p, miR-21-5p, miR-15a-5p, miR-24-3p, miR-34a-5p, miR-146a-5p, miR-148a-3p, miR-30d-5p and miR-30c-5p). We also present technical challenges and our thoughts on the potential validation of circulating miRNAs and their application as biomarkers in the context of T2D.


Assuntos
MicroRNA Circulante , Diabetes Mellitus Tipo 2 , MicroRNAs , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Humanos , MicroRNAs/metabolismo , Prognóstico
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502360

RESUMO

Type 2 diabetes (T2D) represents one of the major health issues of this century. Despite the availability of an increasing number of anti-hyperglycemic drugs, a significant proportion of patients are inadequately controlled, thus highlighting the need for novel biomarkers to guide treatment selection. MicroRNAs (miRNAs) are small non-coding RNAs, proposed as useful diagnostic/prognostic markers. The aim of our study was to identify a miRNA signature occurring in responders to glucagon-like peptide 1 receptor agonists (GLP1-RA) therapy. We investigated the expression profile of eight T2D-associated circulating miRNAs in 26 prospectively evaluated diabetic patients in whom GLP1-RA was added to metformin. As expected, GLP1-RA treatment induced significant reductions of HbA1c and body weight, both after 6 and 12 months of therapy. Of note, baseline expression levels of the selected miRNAs revealed two distinct patient clusters: "high expressing" and "low expressing". Interestingly, a significantly higher percentage of patients in the high expression group reached the glycemic target after 12 months of treatment. Our findings suggest that the evaluation of miRNA expression could be used to predict the likelihood of an early treatment response to GLP1-RA and to select patients in whom to start such treatment, paving the way to a personalized medicine approach.


Assuntos
MicroRNA Circulante/análise , MicroRNA Circulante/genética , Diabetes Mellitus Tipo 2/genética , Adulto , Biomarcadores Farmacológicos/sangue , Glicemia/análise , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Projetos Piloto , Transcriptoma/genética
10.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299336

RESUMO

The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.


Assuntos
Resistência à Insulina/genética , RNA não Traduzido/genética , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA não Traduzido/metabolismo
11.
STAR Protoc ; 2(3): 100606, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34189472

RESUMO

The identification and validation of circulating small non-coding RNA (sncRNA) as biomarkers for disease diagnosis, staging, and response to novel therapies is still a compelling challenge. Pre-analytical variables, such as storage temperature or blood hemolysis, and different analytical approaches affect sncRNA stability, detection, and expression, resulting in discrepancies among studies. Here, we report a systematic standardized protocol to reproducibly analyze circulating sncRNAs, employing high-throughput sncRNA sequencing and qRT-PCR validation, from 200 µL of human plasma samples. For details on the use and execution of this protocol, please refer to Ventriglia et al. (2020), Sebastiani et al. (2017), and Dotta et al. (2018).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pequeno RNA não Traduzido/sangue , Biomarcadores/sangue , Humanos , Reprodutibilidade dos Testes
12.
Front Immunol ; 12: 682948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177928

RESUMO

Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases. Notably, numerous evidence showed a relevant crosstalk between immune system and interacting cells through specific EVs release. The crosstalk between insulin-producing pancreatic ß cells and immune system through EVs bidirectional trafficking has yet started to be deciphered, thus uncovering an intricate communication network underlying type 1 diabetes (T1D) pathogenesis. EVs can also be found in blood plasma or serum. Indeed, the assessment of circulating EVs cargo has been shown as a promising advance in the detection of reliable biomarkers of disease progression. Of note, multiple studies showed several specific cargo alterations of EVs collected from plasma/serum of subjects affected by autoimmune diseases, including T1D subjects. In this review, we discuss the recent literature reporting evidence of EVs role in autoimmune diseases, specifically focusing on the bidirectional crosstalk between pancreatic ß cells and immune system in T1D and highlight the relevant promising role of circulating EVs as disease biomarkers.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Vesículas Extracelulares/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Transporte Biológico , Biomarcadores , Comunicação Celular , Diabetes Mellitus Tipo 1/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Exossomos , Homeostase , Humanos , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo
13.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466949

RESUMO

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic ß cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving ß cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of ß cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Animais , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/citologia , Fenótipo
14.
Front Endocrinol (Lausanne) ; 11: 596898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281748

RESUMO

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing ß-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human ß-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the ß-cell line EndoC-ßH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct ß-cell virus tropism.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Células Secretoras de Insulina/metabolismo , Microvasos/metabolismo , Pâncreas/metabolismo , SARS-CoV-2/isolamento & purificação , COVID-19/metabolismo , COVID-19/patologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Células Secretoras de Insulina/virologia , Microvasos/virologia , Pâncreas/virologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-33042009

RESUMO

C-X-C Motif Chemokine Ligand 10 (CXCL10) is a pro-inflammatory chemokine specifically recognized by the ligand receptor CXCR3 which is mostly expressed in T-lymphocytes. Although CXCL10 expression and secretion have been widely associated to pancreatic islets both in non-obese diabetic (NOD) mice and in human type 1 diabetic (T1D) donors, the specific expression pattern among pancreatic endocrine cell subtypes has not been clarified yet. Therefore, the purpose of this study was to shed light on the pancreatic islet expression of CXCL10 in NOD, in C57Bl/6J and in NOD-SCID mice as well as in human T1D pancreata from new-onset T1D patients (DiViD study) compared to non-diabetic multiorgan donors from the INNODIA European Network for Pancreatic Organ Donors with Diabetes (EUnPOD). CXCL10 was expressed in pancreatic islets of normoglycaemic and new-onset diabetic NOD mice but not in C57Bl/6J and NOD-SCID mice. CXCL10 expression was increased in pancreatic islets of new-onset diabetic NOD mice compared to normoglycaemic NOD mice. In NOD mice, CXCL10 colocalized both with insulin and glucagon. Interestingly, CXCL10-glucagon colocalization rate was significantly increased in diabetic vs. normoglycaemic NOD mouse islets, indicating an increased expression of CXCL10 also in alpha-cells. CXCL10 was expressed in pancreatic islets of T1D patients but not in non-diabetic donors. The analysis of the expression pattern of CXCL10 in human T1D pancreata from DiViD study, revealed an increased colocalization rate with glucagon compared to insulin. Of note, CXCL10 was also expressed in alpha-cells residing in insulin-deficient islets (IDI), suggesting that CXCL10 expression in alpha cells is not driven by residual beta-cells and therefore may represent an independent phenomenon. In conclusion, we show that in T1D CXCL10 is expressed by alpha-cells both in NOD mice and in T1D patients, thus pointing to an additional novel role for alpha-cells in T1D pathogenesis and progression.


Assuntos
Quimiocina CXCL10/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Glucagon/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
16.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861156

RESUMO

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic ß cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inß cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Nanopartículas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Terapia de Alvo Molecular/métodos
17.
Oncologist ; 18(7): 876-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23814042

RESUMO

Lymphoma is the most common malignancy arising in the ocular adnexa, which includes conjunctiva, lachrymal gland, lachrymal sac, eyelids, orbit soft tissue, and extraocular muscles. Ocular adnexal lymphoma (OAL) accounts for 1%-2% of non-Hodgkin lymphoma and 5%-15% of extranodal lymphoma. Histology, stage, and primary localizations are the most important variables influencing the natural history and therapeutic outcome of these malignancies. Among the various lymphoma variants that could arise in the ocular adnexa, marginal zone B-cell lymphoma (OA-MZL) is the most common one. Other types of lymphoma arise much more rarely in these anatomical sites; follicular lymphoma is the second most frequent histology, followed by diffuse large B-cell lymphoma and mantle cell lymphoma. Additional lymphoma entities, like T-cell/natural killer cell lymphomas and Burkitt lymphoma, only occasionally involve orbital structures. Because they are so rare, related literature mostly consists of anecdotal cases included within series focused on OA-MZL and sporadic case reports. This bias hampers a global approach to clinical and molecular properties of these types of lymphoma, with a low level of evidence supporting therapeutic options. This review covers the prevalence, clinical presentation, behavior, and histological and molecular features of uncommon forms of primary OAL and provides practical recommendations for therapeutic management.


Assuntos
Doenças dos Anexos/patologia , Neoplasias Oculares/patologia , Linfoma/patologia , Doenças dos Anexos/genética , Doenças dos Anexos/terapia , Biomarcadores Tumorais/metabolismo , Neoplasias Oculares/genética , Neoplasias Oculares/terapia , Feminino , Humanos , Linfoma/genética , Linfoma/terapia , Linfoma de Células B , Linfoma não Hodgkin/patologia , Linfoma não Hodgkin/terapia , Prognóstico
18.
Hematol Oncol ; 31(3): 143-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23161567

RESUMO

Despite a high proportion of patients with primary CNS lymphoma (PCNSL) experiences failure after/during first-line treatment, a few studies focused on salvage therapy are available, often with disappointing results. Herein, we report feasibility and activity of a combination of rituximab, ifosfamide and etoposide (R-IE regimen) in a multicentre series of patients with PCNSL relapsed or refractory to high-dose methotrexate-based chemotherapy. We considered consecutive HIV-negative patients ≤75 years old with failed PCNSL treated with R-IE regimen (rituximab 375 mg/m(2) , day 0; ifosfamide 2 g/m(2) /day, days1-3; etoposide 250 mg/m(2) , day 1; four courses). Twenty-two patients (median age 60 years; range 39-72; male/female ratio: 1:4) received R-IE as second-line (n = 18) or third-line (n = 4) treatment. Eleven patients had refractory PCNSL, and 11 had relapsing disease. Twelve patients had been previously irradiated. Sixty (68%) of the 88 planned courses were actually delivered; only one patient interrupted R-IE because of toxicity. Grade 4 hematological toxicity was manageable; a single case of grade 4 non-hematological toxicity (transient hepatotoxicity) was recorded. Response was complete in six patients and partial in three (overall response rate = 41%; 95%CI: 21-61%). Seven patients were successfully referred to autologous peripheral blood stem cell collection; four responders were consolidated with high-dose chemotherapy supported by autologous stem cell transplant. At a median follow-up of 24 months, eight responders did not experience relapse, two of them died of neurological impairment while in remission. Six patients are alive, with a 2-year survival after relapse of 25 ± 9%. We concluded that R-IE is a feasible and active combination for patients with relapsed/refractory PCNSL. This regimen allows stem cell collection and successful consolidation with high-dose chemotherapy and autologous transplant.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Terapia de Salvação , Idoso , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/radioterapia , Neoplasias do Sistema Nervoso Central/cirurgia , Terapia Combinada , Irradiação Craniana , Neoplasias dos Nervos Cranianos/tratamento farmacológico , Neoplasias dos Nervos Cranianos/radioterapia , Neoplasias dos Nervos Cranianos/cirurgia , Esquema de Medicação , Avaliação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Neoplasias Oculares/tratamento farmacológico , Neoplasias Oculares/radioterapia , Neoplasias Oculares/cirurgia , Feminino , Seguimentos , Transplante de Células-Tronco Hematopoéticas , Humanos , Ifosfamida/administração & dosagem , Ifosfamida/efeitos adversos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/radioterapia , Linfoma Difuso de Grandes Células B/cirurgia , Masculino , Metotrexato/administração & dosagem , Pessoa de Meia-Idade , Transplante de Células-Tronco de Sangue Periférico , Recidiva , Indução de Remissão , Estudos Retrospectivos , Rituximab , Análise de Sobrevida , Transplante Autólogo , Resultado do Tratamento
19.
Oncologist ; 16(3): 336-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21346023

RESUMO

BACKGROUND: The combination of high doses of methotrexate (MTX) and cytarabine (araC) is the standard chemotherapy for patients with primary CNS lymphoma (PCNSL). The addition of an alkylating agent could improve MTX-araC efficacy because it is active against quiescent G0 cells and increases antimetabolites cytotoxicity. A pilot experience with high doses of MTX, araC, and thiotepa (MAT regimen) was performed to investigate feasibility and efficacy of adding an alkylating agent. With respect to MTX-araC combination, araC dose was halved to minimize toxicity. Herein, we report tolerability, activity, and efficacy of MAT regimen and compare these results to those previously reported with MTX/ara-C combination. METHODS: Twenty HIV-negative patients with PCNSL treated with MAT regimen and whole-brain irradiation and selected according to eligibility criteria of the International Extranodal Lymphoma Study Group (IELSG) #20 trial were analyzed. RESULTS: Patient characteristics of MAT and MTX-araC series were similar. G4 hematologic toxicity was common after MAT chemotherapy, with dose reductions in 60% of patients, infections in 20%, G4 non-hematologic toxicity in 15%, and one (5%) toxic death. Response after chemotherapy was complete in four patients (clinical response rate, 20%; 95% confidence interval, 3%-37%) and partial in three (overall response rate, 35%; 95% confidence interval, 15%-55%). Fifteen patients experienced failure and 16 died (median follow-up, 26 months), with a 2-year overall survival of 24% ± 9%. CONCLUSIONS: MAT and MTX-araC combinations showed similar tolerability, whereas araC dose reduction was associated with a remarkably lower efficacy, hiding any potential benefit of thiotepa. Four doses of araC 2 g/m(2) per course are recommended in patients with PCNSL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Linfoma/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/radioterapia , Terapia Combinada , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Esquema de Medicação , Feminino , Humanos , Linfoma/radioterapia , Masculino , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Projetos Piloto , Terapia de Salvação , Taxa de Sobrevida , Tiotepa/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...