Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genome Ed ; 5: 1167093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545763

RESUMO

Betta splendens, also known as Siamese fighting fish or "betta," is a freshwater fish species renowned for its astonishing morphological diversity and extreme aggressive behavior. Despite recent advances in our understanding of the genetics and neurobiology of betta, the lack of tools to manipulate their genome has hindered progress at functional and mechanistic levels. In this study, we outline the use of three genetic manipulation technologies, which we have optimized for use in betta: CRISPR/Cas9-mediated knockout, CRISPR/Cas9-mediated knockin, and Tol2-mediated transgenesis. We knocked out three genes: alkal2l, bco1l, and mitfa, and analyzed their effects on viability and pigmentation. Furthermore, we knocked in a fluorescent protein into the mitfa locus, a proof-of-principle experiment of this powerful technology in betta. Finally, we used Tol2-mediated transgenesis to create fish with ubiquitous expression of GFP, and then developed a bicistronic plasmid with heart-specific expression of a red fluorescent protein to serve as a visible marker of successful transgenesis. Our work highlights the potential for the genetic manipulation of betta, providing valuable resources for the effective use of genetic tools in this animal model.

2.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824853

RESUMO

Betta splendens , also known as Siamese fighting fish or 'betta', are renowned for their astonishing morphological diversity and extreme aggressive behavior. Despite recent advances in our understanding of the genetics and neurobiology of betta, the lack of tools to manipulate their genome has hindered progress at functional and mechanistic levels. In this study, we outline the use of three genetic manipulation technologies, which we have optimized for use in betta: CRISPR/Cas9-mediated knockout, CRISPR/Cas9-mediated knockin, and Tol2-mediated transgenesis. We knocked out three genes: alkal2l, bco1l , and mitfa , and analyzed their effects on viability and pigmentation. Furthermore, we successfully knocked in a fluorescent protein into the mitfa locus, a proof-of-principle experiment of this powerful technology in betta. Finally, we used Tol2-mediated transgenesis to create fish with ubiquitous expression of GFP, and then developed a bicistronic plasmid with heart-specific expression of a red fluorescent protein to serve as a visible marker of successful transgenesis. Our work highlights the potential for the genetic manipulation of betta, providing valuable resources for the effective use of genetic tools in this animal model.

3.
Comp Med ; 72(3): 169-180, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35701081

RESUMO

Betta splendens, also called Siamese fighting fish or 'betta,' are a popular species in the fishkeeping hobby. Native to South- east Asia, betta have been selectively bred for their fighting ability for hundreds of years, which has resulted in the species' characteristic male aggression. More recently, betta have been bred for a number of ornamental traits such as coloration, fin morphology, and body size. Betta have unique characteristics and an evolutionary history that make them a useful model for studies in the fields of behavior, endocrinology, neurobiology, genetics, development, and evolution. However, standard laboratory procedures for raising and keeping these fish are not well established, which has limited their use. Here, we briefly review the past and present use of betta in research, with a focus on their utility in behavioral, neurobiological, and evolutionary studies. We then describe effective husbandry practices for maintaining betta as a research colony.


Assuntos
Peixes , Animais , Masculino
4.
Sci Adv ; 8(10): eabm4950, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263139

RESUMO

Siamese fighting (betta) fish are among the most popular and morphologically diverse pet fish, but the genetic bases of their domestication and phenotypic diversification are largely unknown. We assembled de novo the genome of a wild Betta splendens and whole-genome sequenced 98 individuals across five closely related species. We find evidence of bidirectional hybridization between domesticated ornamental betta and other wild Betta species. We discover dmrt1 as the main sex determination gene in ornamental betta and that it has lower penetrance in wild B. splendens. Furthermore, we find genes with signatures of recent, strong selection that have large effects on color in specific parts of the body or on the shape of individual fins and that most are unlinked. Our results demonstrate how simple genetic architectures paired with anatomical modularity can lead to vast phenotypic diversity generated during animal domestication and launch betta as a powerful new system for evolutionary genetics.


Assuntos
Domesticação , Genoma , Nadadeiras de Animais , Animais , Peixes/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...