Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749923

RESUMO

The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.

2.
Water Sci Technol ; 89(8): 2118-2131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678413

RESUMO

Biochar-assisted anaerobic digestion (AD) remains constrained due to the inefficient decomposition of complex organics, even with the direct interspecies electron transfer (DIET) pathway. The coupling of electrochemistry with the anaerobic biological treatment could shorten lengthy retention time in co-digestion by improving electron transfer rates and inducing functional microbial acclimation. Thus, this work investigated the potential of improving the performance of AD by coupling low-magnitude electric fields with biochar derived from the anaerobically digested biogas residue. Different voltages (0.3, 0.6, and 0.9 V) were applied at various stages to assess the impact on biochar-assisted AD. The results indicate that an external voltage of 0.3 V, coupled with 5 g/L of biochar, elevates CH4 yield by 45.5% compared to biogas residue biochar alone, and the coupled approach increased biogas production by up to 143% within 10 days. This finding may be partly explained by the enhanced utilization of substrates and the increased amounts of specific methanogens such as Methanobacterium and Methanosarcina. The abundance of the former increased from 4.0 to 11.3%, which enhances the DIET between microorganisms. Furthermore, the coupling method shows better potential for enhancing AD compared to preparing iron-based biochar, and these results present potential avenues for its broader applications.


Assuntos
Biocombustíveis , Carvão Vegetal , Esgotos , Carvão Vegetal/química , Anaerobiose , Esgotos/química , Reatores Biológicos , Eletricidade , Metano/metabolismo , Perda e Desperdício de Alimentos
3.
ACS Appl Bio Mater ; 7(2): 727-751, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166376

RESUMO

The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/toxicidade , Nanoestruturas/química , Macrófagos , Inflamação , Imunidade , Imunomodulação
4.
Acc Chem Res ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295306

RESUMO

ConspectusThis Account presents a new discipline, single sample molecular chronology (SSMC), which studies the relative age of an individual compound occurring in several temporal pools of a single sample in complex media. Geochemists have analytically observed for a long time that several pools of the same compound, e.g., a hydrocarbon or a pesticide, can be isolated from the same sample, e.g., a sediment or a soil, to yield a free compound pool obtained by solvent extraction and then a bound compound pool after treatment of the solid residue and further extraction. Yet the study on the significance of these pools has been limited due to the inherent lack of criteria to clearly distinguish the same compound present in various pools, and, as a consequence, the existence of these pools has been criticized as resulting from a default of extraction during analytical fractionation. Our breakthrough was to distinguish isotopically several temporal pools of a plant-derived C31 n-alkane in a soil sample containing naturally 13C-labeled carbon and then to set up a method, 13C-relative dating, to calculate the relative age of these temporal pools. We observed wide differences in the relative age of the C31 n-alkane in temporal pools of a single soil sample, ranging from -6.7 years for a soil humin-bound homologue to +25.1 years for the free homologue in the coarser soil particle-size fraction. Individual compounds can thus be used as molecular clocks to determine the relative age of temporal pools from the same sample. Moreover, our findings represented the first unambiguous proof that bound compounds are cycling slower and are somehow protected in a complex organo-mineral matrix, key information for the mechanism of carbon sequestration. SSMC could be developed in all disciplines of physical, biological, and environmental sciences manipulating complex media, to study the history of individual compounds. This chronochemistry should provide new information about the origin and transformation of individual compounds in biogeochemical systems. For example, historical information on drugs or pollutants encapsulated in temporal pools of a living organism would bring about critical new knowledge about the mechanisms of disease development. Investigations require isotope tracing using any isotope in natural or artificial abundance. Methods to separate temporal pools are suggested.

5.
Sci Total Environ ; 912: 169179, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081431

RESUMO

Combustion of fossil fuels, industry and agriculture sectors are considered as the largest emitters of carbon dioxide. In fact, the emission of CO2 greenhouse gas has been considerably intensified during the last two decades, resulting in global warming and inducing variety of adverse health effects on human and environment. Calling for effective and green feedstocks to remove CO2, low-cost materials such as coal ashes "wastes-to-materials", have been considered among the interesting candidates of CO2 capture technologies. On the other hand, several techniques employing coal ashes as inorganic supports (e.g., catalytic reduction, photocatalysis, gas conversion, ceramic filter, gas scrubbing, adsorption, etc.) have been widely applied to reduce CO2. These processes are among the most efficient solutions utilized by industrialists and scientists to produce clean energy from CO2 and limit its continuous emission into the atmosphere. Herein, we review the recent trends and advancements in the applications of coal ashes including coal fly ash and bottom ash as low-cost wastes to reduce CO2 concentration through adsorption and catalysis processes. The chemical routes of structural modification and characterization of coal ash-based feedstocks are discussed in details. The adsorption and catalytic performance of the coal ashes derivatives towards CO2 selective reduction to CH4 are also described. The main objective of this review is to highlight the excellent capacity of coal fly ash and bottom ash to capture and selective conversion of CO2 to methane, with the aim of minimizing coal ashes disposal and their storage costs. From a practical view of point, the needs of developing new advanced technologies and recycling strategies might be urgent in the near future to efficient make use of coal ashes as new cleaner materials for CO2 remediation purposes, which favourably affects the rate of global warming.

6.
Water Res ; 249: 120878, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007896

RESUMO

H2-driven reduction of hexavalent chromium (Cr(VI)) using precious-metal catalysts is promising, but its implementation in water treatment has been restricted by poor H2-transfer efficiency and high catalyst loss. We investigated the reduction of Cr(VI) through hydrogenation catalyzed by elemental-palladium nanoparticles (PdNPs) generated in-situ within biofilm of a membrane biofilm reactor (MBfR), creating a Pd-MBfR. Experiments were conducted using a Pd-MBfR and a non-Pd MBfR. The Pd-MBfR achieved Cr(VI) (1000 µg L-1) reduction of >99 % and reduced the concentration of total Cr to below 50 µg L-1, much lower than the total Cr concentration in the non-Pd MBfR effluent (290 µg L-1). The Pd-MBfR also had a lower concentration of dissolved organic compounds compared to the non-Pd MBfR, which minimized the formation of soluble organo-Cr(III) complexes and promoted precipitation of Cr(OH)3. Solid-state characterizations documented deposition of Cr(OH)3 as the product of Cr(VI) reduction in the Pd-MBfR. Metagenomic analyses revealed that the addition and reduction of Cr(VI) had minimal impact on the microbial community (dominated by Dechloromonas) and functional genes in the biofilm of the Pd-MBfR, since the PdNP-catalyzed reduction process was rapid. This study documented efficient Cr(VI) reduction and precipitation of Cr(OH)3 by the Pd-MBfR technology.


Assuntos
Nanopartículas Metálicas , Oxirredução , Paládio , Cromo , Biofilmes
7.
Sci Total Environ ; 914: 169582, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154646

RESUMO

Metals are rarely found as free ions in natural and anthropogenic environments, but they are often associated with organic matter and minerals. Under the context of circular economy, metals should be recycled, yet they are difficult to extract for their complex forms in real situations. Based on the protocols of review methodology and the analysis of VOS viewer, there are few reviews on the properties of metal-organic complexes, decomplexation methods, the effect of coexisting ions, the pH influence, and metal recovery methods for the increasingly complicated metal-organic complexes wastewater. Conventional treatment methods such as flocculation, adsorption, biological degradation, and ion exchange fail to decompose metal-organic complexes completely without causing secondary pollution in wastewater. To enhance comprehension of the behavior and morphology exhibited by metal-organic complexes within aqueous solutions, we presented the molecular structure and properties of metal-organic complexes, the decomplexation mechanisms that encompassed both radical and non-radical oxidizing species, including hydroxyl radical (OH), sulfate radical (SO˙4-), superoxide radical (O˙2-), hydrogen peroxide (H2O2), ozone (O3), and singlet oxygen (1O2). More importantly, we reviewed novel aspects that have not been covered by previous reviews considering the impact of operational parameters and coexisting ions. Finally, the potential avenues and challenges were proposed for future research.

8.
Bioresour Technol ; 387: 129589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532062

RESUMO

Understanding the source of methane (CH4) is of great significance for improving the anaerobic fermentation efficiency in bioengineering, and for mitigating the emission potential of natural ecosystems. Microbes involved in the process named direct interspecies electron transfer coupling with CO2 reduction, i.e., electrons released from electroactive bacteria to reduce CO2 into CH4, have attracted considerable attention for wastewater treatment in the past decade. However, how the synergistic effect of microbiota contributes to this anaerobic carbon metabolism accompanied by CH4 production still remains poorly understood, especial for wastewater with antibiotic exposure. Results show that enhancing lower-abundant acetoclastic methanogens and acetogenic bacteria, rather than electroactive bacteria, contributed to CH4 production, based on a metagenome-assembled genomes network analysis. Natural and artificial isotope tracing of CH4 further confirmed that CH4 mainly originated from acetoclastic methanogenesis. These findings reveal the contribution of direct acetate cleavage (acetoclastic methanogenesis) and provide insightsfor further regulation of methanogenic strategies.


Assuntos
Euryarchaeota , Microbiota , Elétrons , Isótopos de Carbono , Dióxido de Carbono/metabolismo , Bactérias/metabolismo , Acetatos , Anaerobiose , Euryarchaeota/metabolismo , Metano/metabolismo
9.
Environ Sci Technol ; 57(47): 19033-19042, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37384585

RESUMO

The increasing presence of antibiotics in water sources threatens public health and ecosystems. Various treatments have been previously applied to degrade antibiotics, yet their efficiency is commonly hindered by the presence of natural organic matter (NOM) in water. On the contrary, we show here that nine types of NOM and NOM model compounds improved the removal of trimethoprim and sulfamethoxazole by ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. This is probably associated with the presence of phenolic moieties in NOMs, as suggested by first-order kinetics using NOM, phenol, and hydroquinone. Electron paramagnetic resonance reveals that NOM radicals are generated within milliseconds in the Fe(VI)-NOM system via single-electron transfer from NOM to Fe(VI) with the formation of Fe(V). The dominance of the Fe(V) reaction with antibiotics resulted in their enhanced removal despite concurrent reactions between Fe(V) and NOM moieties, the radicals, and water. Kinetic modeling considering Fe(V) explains the enhanced kinetics of antibiotics abatement at low phenol concentrations. Experiments with humic and fulvic acids of lake and river waters show similar results, thus supporting the enhanced abatement of antibiotics in real water situations.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos , Ecossistema , Poluentes Químicos da Água/análise , Oxirredução , Fenóis , Água , Fenol , Purificação da Água/métodos , Cinética
10.
Int J Biol Macromol ; 242(Pt 1): 124585, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105252

RESUMO

Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is, therefore, a need for methods to recycle waste into valuable materials through the resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable yet inexpensive catalysts. In this case, growing attention has been paid to the development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give a comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.


Assuntos
Gerenciamento de Resíduos , Águas Residuárias , Amônia , Poluição Ambiental , Polissacarídeos , Reciclagem
11.
Environ Sci Pollut Res Int ; 30(24): 64932-64948, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097573

RESUMO

Heterostructured nanomaterials exhibit pronounced potential in environmental science, including the water purification, pollutant monitoring, and environmental remediation. Especially, their application through advanced oxidation processes has been found capable and adaptable in waste water treatment. In semiconductor photocatalysts, metal sulfides are the leading materials. However, for further modifications, the progresses on specific materials need to be overviewed. Among metal sulfides, nickel sulfides are the emerging semiconductors due to relatively narrow band gaps, high thermal and chemical stability, and cost effectiveness. The aim of the present review is to conduct a thorough analysis and summary of recent progress in the application of nickel sulfide-based heterostructures in water decontamination. Initially, the review introduces the emerging needs of the materials for environment following the characteristics features of metal sulfides with emphasis on nickel sulfides. Subsequently, synthesis strategies and structural properties of nickel sulfide (NiS and NiS2)-based photocatalysts are discussed. Herein, controlled synthesis procedures to influence their active structure, compositions, shape, and size for the enhanced photocatalytic performances are also considered. Furthermore, there is discussion on heterostructures formed by metal modification, metal oxides, and carbon hybridized nanocomposites. In the continuation, the modified characteristics are investigated which favors the photocatalytic processes for degradation of organic contaminations in water. The overall study highlights significant improvements in degradation efficiency of hetero-interfaced NiS and NiS2 photocatalysts towards organics that are comparable to expensive noble-metal photocatalysts. Finally, we also added a little on prospects for future advancement of nickel sulfide-based photocatalysts for applications in sustainable environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Nanocompostos , Níquel , Metais , Sulfetos
12.
Bioresour Technol ; 377: 128952, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965587

RESUMO

Food waste (FW) is a severe environmental and social concern that today's civilization is facing. Therefore, it is necessary to have an efficient and sustainable solution for managing FW bioprocessing. Emerging technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML) are critical to achieving this, in which IoT sensors' data is analyzed using AI and ML techniques, enabling real-time decision-making and process optimization. This work describes recent developments in valorizing FW using novel tactics such as the IoT, AI, and ML. It could be concluded that combining IoT, AI, and ML approaches could enhance bioprocess monitoring and management for generating value-added products and chemicals from FW, contributing to improving environmental sustainability and food security. Generally, a comprehensive strategy of applying intelligent techniques in conjunction with government backing can minimize FW and maximize the role of FW in the circular economy toward a more sustainable future.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Alimentos , Inteligência Artificial
13.
Bioresour Technol ; 376: 128860, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907228

RESUMO

Microalgae have great potential in producing energy-dense and valuable products via thermochemical processes. Therefore, producing alternative bio-oil to fossil fuel from microalgae has rapidly gained popularity due to its environmentally friendly process and elevated productivity. This current work aims to review comprehensively the microalgae bio-oil production using pyrolysis and hydrothermal liquefaction. In addition, core mechanisms of pyrolysis and hydrothermal liquefaction process for microalgae were scrutinized, showing that the presence of lipids and proteins could contribute to forming a large amount of compounds containing O and N elements in bio-oil. However, applying proper catalysts and advanced technologies for the two aforementioned approaches could improve the quality, heating value, and yield of microalgae bio-oil. In general, microalgae bio-oil produced under optimal conditions could have 46 MJ/kg heating value and 60% yield, indicating that microalgae bio-oil could become a promising alternative fuel for transportation and power generation.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Microalgas/metabolismo , Pirólise , Temperatura , Água/química
14.
Environ Chem Lett ; 21(3): 1701-1727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846189

RESUMO

Transmission of the coronavirus disease 2019 is still ongoing despite mass vaccination, lockdowns, and other drastic measures to control the pandemic. This is due partly to our lack of understanding on the multiphase flow mechanics that control droplet transport and viral transmission dynamics. Various models of droplet evaporation have been reported, yet there is still limited knowledge about the influence of physicochemical parameters on the transport of respiratory droplets carrying the severe acute respiratory syndrome coronavirus 2. Here we review the effects of initial droplet size, environmental conditions, virus mutation, and non-volatile components on droplet evaporation and dispersion, and on virus stability. We present experimental and computational methods to analyze droplet transport, and factors controlling transport and evaporation. Methods include thermal manikins, flow techniques, aerosol-generating techniques, nucleic acid-based assays, antibody-based assays, polymerase chain reaction, loop-mediated isothermal amplification, field-effect transistor-based assay, and discrete and gas-phase modeling. Controlling factors include environmental conditions, turbulence, ventilation, ambient temperature, relative humidity, droplet size distribution, non-volatile components, evaporation and mutation. Current results show that medium-sized droplets, e.g., 50 µm, are sensitive to relative humidity. Medium-sized droplets experience delayed evaporation at high relative humidity, and increase airborne lifetime and travel distance. By contrast, at low relative humidity, medium-sized droplets quickly shrink to droplet nuclei and follow the cough jet. Virus inactivation within a few hours generally occurs at temperatures above 40 °C, and the presence of viral particles in aerosols impedes droplet evaporation.

15.
Environ Chem Lett ; 21(2): 725-739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36628267

RESUMO

Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01557-z.

16.
Sci Total Environ ; 859(Pt 1): 160183, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36384176

RESUMO

Nitrogen pollution and the rising amount of wastewater generation are calling for advanced wastewater treatments, which is particularly necessary for carbon-deficient wastewater that contains multi-species inorganic nitrogen, since conventional heterotrophic denitrification processes cannot remove nitrogen completely when carbon sources are insufficient. For that, bioelectrochemical systems (BES) have been recently developed because they can simultaneously produce electricity and remove resistant nitrogen from the carbon-deficient wastewater. However, the simultaneous removal of multi-species inorganic nitrogen cannot be achieved by electroautotrophic denitrification using BES alone. Moreover, the efficiency of nitrogen removal and power generation has been thwarted by the low energy output, high internal resistance of the device, and electron competition in non-denitrification pathways. This review article discusses the latest developments for nitrogen removal through BES-enhanced denitrification and elucidates multiple coupled BES-based denitrification pathways to remove multi-species inorganic nitrogen simultaneously. Focus points of the research area include coupling BES technologies with emerged methods, electron transfer enhancement, and avoiding electron competition that improves performance with less cost. The prospect of reducing emissions of greenhouse gases is also critically reviewed, in the hope of reducing potential intermediate products of denitrification, such as nitrous oxide (a potent greenhouse gas), through multi-factor regulation. We imply that BES is a good choice for future scale-up applications of MFC coupled with MEC to treat carbon-deficient wastewater. Overall, this review will provide useful information for the development of advanced technologies to treat carbon-deficient wastewater with less emission of greenhouse gases.


Assuntos
Gases de Efeito Estufa , Águas Residuárias , Nitrogênio , Carbono , Desnitrificação , Reatores Biológicos
18.
Environ Chem Lett ; 21(3): 1251-1255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35975196
19.
Environ Chem Lett ; 21(1): 339-362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36060494

RESUMO

Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis.  The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photocatalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/solvothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.

20.
Water Environ Res ; 94(12): e10817, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36524464

RESUMO

Sulfamethoxazole (SMX) is one of veterinary drugs and food additives, which has been frequently detected in surface waters in recent years and will cause damage to organisms. Therefore, SMX was selected as a target to be investigated, including the degradation kinetics, evolution of toxicity, and antibiotic resistance genes (ARGs) of SMX during chlorination in batch reactors and water distribution systems (WDS), to determine the optimal factors for removing SMX. In the range of investigated pH (6.3-9.0), the SMX degradation had the fastest rate at close to neutral pH. The chlorination of SMX was affected by the initial total free chlorine concentration, and the degradation of SMX was consistent with second-order kinetics. The rate constants in batch reactors are (2.23 ± 0.07) × 102 M-1  s-1 and (5.04 ± 0.30) × 10 M-1  s-1 for HClO and ClO-1 , respectively. Moreover, the rate constants in WDS are (1.76 ± 0.07) × 102 M-1  s-1 and (4.06 ± 0.62) × 10 M-1  s-1 , respectively. The degradation rate of SMX was also affected by pipe material, and the rate followed the following order: stainless-steel pipe (SS) > ductile iron pipe (DI) > polyethylene pipe (PE). The degradation rate of SMX in the DI increased with increasing flow rate, but the increase was limited. In addition, SMX could increase the toxicity of water initially, yet the toxicity reduced to the level of tap water after 2-h chlorination. And the relative abundance of ARGs (sul1 and sul2) of tap water samples was significantly increased under different chlorination conditions. PRACTITIONER POINTS: The degradation rate of SMX in batch reactor and WDS is different, and they could be described by first- or second-order kinetics. The degradation of SMX had the fastest rate at neutral pH. The degradation rate of SMX was also affected by pipe material and flow velocity. SMX increased the toxicity of water initially, yet the toxicity reduced after a 2-h chlorination. SMX increased the relative abundance of antibiotic resistance genes sul1 and sul2.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/toxicidade , Antibacterianos/química , Halogenação , Água , Resistência Microbiana a Medicamentos/genética , Cinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...