Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 98(8): 4498-503, 2001 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-11287649

RESUMO

Failures to arrest growth in response to senescence or transforming growth factor beta (TGF-beta) are key derangements associated with carcinoma progression. We report that activation of telomerase activity may overcome both inhibitory pathways. Ectopic expression of the human telomerase catalytic subunit, hTERT, in cultured human mammary epithelial cells (HMEC) lacking both telomerase activity and p16(INK4A) resulted in gaining the ability to maintain indefinite growth in the absence and presence of TGF-beta. The ability to maintain growth in TGF-beta was independent of telomere length and required catalytically active telomerase capable of telomere maintenance in vivo. The capacity of ectopic hTERT to induce TGF-beta resistance may explain our previously described gain of TGF-beta resistance after reactivation of endogenous telomerase activity in rare carcinogen-treated HMEC. In those HMEC that overcame senescence, both telomerase activity and TGF-beta resistance were acquired gradually during a process we have termed conversion. This effect of hTERT may model a key change occurring during in vivo human breast carcinogenesis.


Assuntos
Mama/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , RNA , Telomerase/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Western Blotting , Mama/citologia , Domínio Catalítico , Divisão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Proteínas de Ligação a DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Telomerase/química , Telômero
2.
Gene Ther ; 8(7): 568-78, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11319624

RESUMO

In human cells, telomerase activity is regulated by transcriptional control of the telomerase reverse transcriptase gene (hTERT) whose product is the catalytic subunit of the enzyme. The hTERT promoter is active in virtually all types of tumors and immortal cells, but is silent in most adult somatic tissues. In this study, we placed the herpes simplex virus thymidine kinase gene under the control of the hTERT promoter with the aim of restricting its expression to tumor cells. In transfection experiments, the hTERT promoter driven thymidine kinase gene (hTERTp/TK) conferred ganciclovir sensitivity to all tumor and immortal cell lines tested, whereas normal somatic cells remained largely unaffected. Human hTERTp/TK-positive cancer cells implanted in nude mice developed into tumors that could be eradicated by ganciclovir treatment. The hTERTp/TK cassette was inserted into an adenovirus vector and its efficacy in reducing tumor growth was compared with that of an adenovirus carrying the thymidine kinase gene under the control of the cytomegalovirus immediate-early promoter (CMVp/TK). In a xenograft model using the human 143B osteosarcoma cell line, a single injection of either virus resulted in equivalent tumor regression and survival upon ganciclovir treatment. In animals injected intratumorally with the CMVp/TK adenovirus, expression of the thymidine kinase gene was detected in tumors, as well as in liver samples. Expression of the suicide gene in combination with ganciclovir resulted in severe liver histopathology and in an elevation of hepatic enzymes. In sharp contrast, when the hTERT promoter controlled the thymidine kinase gene, transgene expression was observed in tumors, but not in liver samples. Normal liver function in these animals was confirmed by serum levels of hepatic enzymes that were indistinguishable from those of control healthy mice. These results indicate that by restricting thymidine kinase expression to tumor cells, the hTERT promoter allows the tumoricidal effect of the suicidal gene to be exerted without detrimental consequences on healthy tissues and vital organs. The tight specificity of expression imparted by the hTERT promoter will assist the development of novel approaches to the treatment of a broad array of cancer types.


Assuntos
Terapia Genética/métodos , Hepatopatias/prevenção & controle , Osteossarcoma/terapia , Regiões Promotoras Genéticas , RNA , Telomerase/genética , Adenoviridae/genética , Animais , Proteínas de Ligação a DNA , Ganciclovir/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Terapia Genética/efeitos adversos , Vetores Genéticos/uso terapêutico , Humanos , Hepatopatias/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Mensageiro/genética , Taxa de Sobrevida , Timidina Quinase/genética , Transplante Heterólogo , Células Tumorais Cultivadas
3.
Cancer Res ; 60(8): 2116-21, 2000 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10786671

RESUMO

Telomerase, an enzymatic activity responsible for the replication of chromosome end structures, is strongly upregulated in most human cancers. In contrast, most differentiated tissues are telomerase negative. The rate-limiting step for telomerase activity seems to be the expression of the catalytic subunit of the enzyme, encoded by the human telomerase reverse transcriptase (hTERT) gene. The precise mechanism of how hTERT is regulated has not been elucidated yet. We show here that the down-regulation of hTERT mRNA during 12-O-tetradecanoylphorbol-13-acetate-induced differentiation of human U937 cells is a consequence of a fast decrease in the rate of transcription rather than changes in its half-life. The only transcription factor that has so far been implicated in the regulation of hTERT expression is the c-Myc oncoprotein. Our analysis shows that another member of the myc/marx/mad network, mad1, encoding a transcriptional repressor that is significantly increased by 12-O-tetra-decanoylphorbol-13-acetate treatment, represses hTERT promoter-driven reporter gene activity in transient transfection assays. This effect is dependent on the NH2 terminal domain of Madl, which mediates the association with the transcriptional corepressor mSin3. Our findings suggest the involvement of an additional transcription factor in the regulation of hTERT expression and may provide a model for how hTERT activity is controlled during the differentiation process in human somatic tissues.


Assuntos
Domínio Catalítico/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , RNA , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Telomerase/genética , Transcrição Gênica/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Histona Desacetilases , Humanos , Cinética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Elementos de Resposta/genética , Deleção de Sequência/genética , Telomerase/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Tretinoína/farmacologia , Células U937
4.
Oncogene ; 18(5): 1219-26, 1999 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-10022128

RESUMO

The telomerase reverse transcriptase component (TERT) is not expressed in most primary somatic human cells and tissues, but is upregulated in the majority of immortalized cell lines and tumors. Here, we identify the c-Myc transcription factor as a direct mediator of telomerase activation in primary human fibroblasts through its ability to specifically induce TERT gene expression. Through the use of a hormone inducible form of c-Myc (c-Myc-ER), we demonstrate that Myc-induced activation of the hTERT promoter requires an evolutionarily conserved E-box and that c-Myc-ER-induced accumulation of hTERT mRNA takes place in the absence of de novo protein synthesis. These findings demonstrate that the TERT gene is a direct transcriptional target of c-Myc. Since telomerase activation frequently correlates with immortalization and telomerase functions to stabilize telomers in cycling cells, we tested whether Myc-induced activation of TERT gene expression represents an important mechanism through which c-Myc acts to immortalize cells. Employing the rat embryo fibroblast cooperation assay, we show that TERT is unable to substitute for c-Myc in the transformation of primary rodent fibroblasts, suggesting that the transforming activities of Myc extend beyond its ability to activate TERT gene expression and hence telomerase activity.


Assuntos
Proteínas de Bactérias/metabolismo , Transformação Celular Neoplásica , Peptidilprolil Isomerase , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , DNA Polimerase Dirigida por RNA/biossíntese , RNA , Telomerase/biossíntese , Animais , Sequência de Bases , Sequência Conservada , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas/genética , DNA Polimerase Dirigida por RNA/genética , Ratos , Homologia de Sequência do Ácido Nucleico , Telomerase/genética , Transcrição Gênica
5.
Ann N Y Acad Sci ; 886: 1-11, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10667198

RESUMO

Telomerase is absent in most normal tissues, but is abnormally reactivated in all major cancer types. Telomerase enables tumor cells to maintain telomere length, allowing indefinite replicative capacity. Albeit not sufficient in itself to induce neoplasia, telomerase is believed to be necessary for cancer cells to grow without limit. The presence of telomerase has been detected in virtually all cancer types including the most prevalent cancers of the prostate, breast, lung, colon, bladder, uterus, ovary, and pancreas as well as in lymphomas, leukemias, and melanomas. In addition, data from cancer patients indicate that telomerase levels correlate with clinical outcome in neuroblastomas, leukemias, and prostate, gastric, and breast cancers. Studies using an antisense to the human telomerase RNA component demonstrate that telomerase in human tumor lines can be blocked ex vivo. In these experiments, telomerase inhibition led to telomere shortening and cancer cell death, validating telomerase as a target for anticancer therapy. Telomerase is a uniquely appealing target for drug discovery because its dichotomic expression in normal versus cancer cells suggests that no serious side effects would result from a treatment abrogating telomerase activity. A variety of approaches to telomerase inhibition are being investigated and are discussed.


Assuntos
Inibidores Enzimáticos/farmacologia , Neoplasias/enzimologia , Telomerase/antagonistas & inibidores , Humanos
6.
Science ; 279(5349): 349-52, 1998 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-9454332

RESUMO

Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.


Assuntos
Divisão Celular , Senescência Celular , Proteínas/metabolismo , RNA , Telomerase/metabolismo , Telômero/fisiologia , Biomarcadores , Catálise , Linhagem Celular , Transformação Celular Neoplásica , Clonagem Molecular , Proteínas de Ligação a DNA , Fibroblastos/citologia , Homeostase , Humanos , Cariotipagem , Fenótipo , Epitélio Pigmentado Ocular/citologia , Proteínas/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Telomerase/genética , Telômero/metabolismo , Telômero/ultraestrutura , Transfecção , Células Tumorais Cultivadas , beta-Galactosidase/metabolismo
7.
Nat Genet ; 17(4): 498-502, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9398860

RESUMO

The maintenance of chromosome termini, or telomeres, requires the action of the enzyme telomerase, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. Telomerase is expressed and telomere length is maintained in human germ cells and the great majority of primary human tumours. However, telomerase is not detectable in most normal somatic cells; this corresponds to the gradual telomere loss observed with each cell division. It has been proposed that telomere erosion eventually signals entry into senescence or cell crisis and that activation of telomerase is usually required for immortal cell proliferation. In addition to the human telomerase RNA component (hTR; ref. 11), TR1/TLP1 (refs 12, 13), a protein that is homologous to the p80 protein associated with the Tetrahymena enzyme, has been identified in humans. More recently, the human telomerase reverse transcriptase (hTRT; refs 15, 16), which is homologous to the reverse transcriptase (RT)-like proteins associated with the Euplotes aediculatus (Ea_p123), Saccharomyces cerevisiae (Est2p) and Schizosaccharomyces pombe (5pTrt1) telomerases, has been reported to be a telomerase protein subunit. A catalytic function has been demonstrated for Est2p in the RT-like class but not for p80 or its homologues. We now report that in vitro transcription and translation of hTRT when co-synthesized or mixed with hTR reconstitutes telomerase activity that exhibits enzymatic properties like those of the native enzyme. Single amino-acid changes in conserved telomerase-specific and RT motifs reduce or abolish activity, providing direct evidence that hTRT is the catalytic protein component of telomerase. Normal human diploid cells transiently expressing hTRT possessed telomerase activity, demonstrating that hTRT is the limiting component necessary for restoration of telomerase activity in these cells. The ability to reconstitute telomerase permits further analysis of its biochemical and biological roles in cell aging and carcinogenesis.


Assuntos
DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , RNA/metabolismo , Telomerase/genética , Sequência de Aminoácidos , Animais , Catálise , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA/biossíntese , RNA/genética , DNA Polimerase Dirigida por RNA/biossíntese , Coelhos , Alinhamento de Sequência , Moldes Genéticos
8.
EMBO J ; 14(16): 3937-45, 1995 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-7664734

RESUMO

The nematode Caenorhabditis elegans has been a choice organism for the study of developmental regulation using classical and molecular genetic approaches. Consequently, many genetically defined pathways have been described and numerous regulatory genes have been identified. However, the biochemical and functional properties of these putative transcription factors have remained uncharacterized, partly because C.elegans cell-free transcription reactions have not been developed. Here we describe the in vitro transcriptional activation properties of two C.elegans homeodomain proteins, UNC-86 and MEC-3, in nuclear extracts derived from C.elegans embryos. Whereas the POU homeodomain protein, UNC-86, alone was able to activate transcription of the mec-3 promoter in vitro, the LIM homeodomain protein, MEC-3, failed to bind DNA or activate transcription on its own. However, in the presence of both UNC-86 and MEC-3, we observed cooperative binding to the mec-3 promoter and synergistic activation of transcription in vitro. Protein-protein interaction assays revealed that UNC-86 can bind directly to MEC-3, and in vitro transcription studies indicate that both proteins contain a functional activation domain. Thus, formation of a heteromeric complex containing two activation domains results in a highly potent activator. These studies provide direct functional evidence for coordinated transcriptional activation by two C.elegans DNA binding proteins that have been defined genetically as regulators of gene expression during embryogenesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Proteínas de Helminto/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Animais , Caenorhabditis elegans/embriologia , Extratos Celulares , Núcleo Celular/metabolismo , DNA de Helmintos/metabolismo , Embrião não Mamífero , Genes de Helmintos/genética , Proteínas de Helminto/genética , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Fatores do Domínio POU , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 90(20): 9673-7, 1993 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8415761

RESUMO

The nematode Caenorhabditis elegans has become an organism of choice for the study of developmental processes at the genetic level. We have undertaken to develop an in vitro system to study transcription in C. elegans. As a first step we report here the cloning of the cDNA encoding the C. elegans TATA-box-binding protein (CeTBP). We used "touch-down PCR" to generate a specific DNA probe derived from the C-terminal region conserved in all TBP genes cloned to date. Several clones encoding an extended open reading frame were isolated from a phage lambda cDNA library. The complete amino acid sequence of CeTBP deduced from the cDNA reveals a protein of 37 kDa with an extended sequence similarity in the C-terminal region with all other TBP cDNAs sequenced so far. The N-terminal region of CeTBP (amino acids 1-153), however, does not show any homology with TBPs from other organisms. Interestingly, the N-terminal portion of the molecule contains three short direct repeats. Purified recombinant CeTBP binds specifically to the TATA box sequence, interacts with transcription factors TFIIA and TFIIB, and is able to substitute for the TFIID basal activity when assayed by in vitro transcription in both HeLa and C. elegans nuclear extracts. CeTBP is therefore a basal transcription factor.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , Regulação da Expressão Gênica , Dados de Sequência Molecular , Proteínas Recombinantes , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , TATA Box , Proteína de Ligação a TATA-Box , Transcrição Gênica
10.
Genes Dev ; 4(9): 1541-51, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2253878

RESUMO

A gene, encoding a liver-enriched transcriptional activator protein (LAP) has been isolated. LAP is a 32-kD protein that stimulates the transcription of chimeric genes containing albumin D-promoter elements both in vivo and in vitro. LAP shares extensive sequence homology (71%) in its DNA-binding and leucine zipper domains with C/EBP. As a consequence, these two proteins show an indistinguishable DNA-binding specificity and readily heterodimerize. In addition, both genes, lap and cebp, are devoid of intervening sequences. Although correctly initiated transcripts from the LAP gene accumulate in the six examined tissues--liver, lung, spleen, kidney, brain, and testis--LAP protein is highly enriched in liver nuclei. Thus, the preferential accumulation of LAP protein in liver appears to be regulated post-transcriptionally.


Assuntos
Proteínas de Ligação a DNA/genética , Fígado/metabolismo , Fatores de Transcrição/genética , Albuminas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT , Núcleo Celular/metabolismo , Clonagem Molecular , Elementos Facilitadores Genéticos/fisiologia , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Especificidade de Órgãos , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica , Ratos , Ratos Endogâmicos Lew , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica/fisiologia
11.
Cell ; 57(7): 1179-87, 1989 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-2736625

RESUMO

HNF1 is a liver-specific transcription factor that plays the dominant role in determining the cell type-specific in vitro transcription of the albumin gene. Here we report the purification and preliminary characterization of HNF1. HNF1 appears to be heavily glycosylated since it is retained on a wheat germ agglutinin-agarose column and can be eluted from it with N-acetylglucosamine, a property not observed with other factors binding to the albumin promoter. Using in vitro transcription assays we demonstrate that purified HNF1 strongly stimulates albumin promoter activity in spleen nuclear extracts, which are devoid of this factor. Likewise, an artificial promoter consisting of two HNF1 recognition sites in front of a TATA motif is strongly activated by HNF1 in such extracts. In addition to stimulating transcription directly by binding to its cognate site, HNF1 may further enhance albumin promoter activity by interacting cooperatively with other trans-acting factors.


Assuntos
Albuminas/genética , Proteínas de Ligação a DNA/fisiologia , Fígado/fisiologia , Fatores de Transcrição/fisiologia , Animais , Evolução Biológica , Regulação da Expressão Gênica , Glicoproteínas/fisiologia , Camundongos , Regiões Promotoras Genéticas , Distribuição Tecidual , Fatores de Transcrição/isolamento & purificação , Transcrição Gênica
12.
Cell ; 51(6): 963-73, 1987 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-3690666

RESUMO

The promoter of the mouse albumin gene contains at least six binding sites for specific DNA-binding proteins (A to F). Four of these sites (A, D, E, and F) can be occupied by transcription factors that are considerably enriched in liver nuclei, as compared to spleen or brain nuclei. These factors consist of a heat-stable protein that fills sites A, D, and F, and a member of a family of nuclear factor I (NF-I) related proteins that occupies site E. Site C binds a protein that is equally abundant in liver, brain, and spleen nuclei. Occupancy of this site and the binding of the heat-stable factor to the immediately adjacent site D appear to be mutually exclusive. However, both of these competing binding sites are required for maximal in vitro transcription.


Assuntos
Albuminas/genética , Proteínas Estimuladoras de Ligação a CCAAT , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Química Encefálica , Fígado/análise , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição NFI , Proteínas Nucleares , Baço/análise , Fatores de Transcrição/análise , Proteína 1 de Ligação a Y-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...