Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Hum Neurosci ; 16: 818711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308615

RESUMO

Current diagnostic criteria for schizophrenia place emphasis on delusions and hallucinations, whereas the classical descriptions of schizophrenia by Kraepelin and Bleuler emphasized disorganization and impoverishment of mental activity. Despite the availability of antipsychotic medication for treating delusions and hallucinations, many patients continue to experience persisting disability. Improving treatment requires a better understanding of the processes leading to persisting disability. We recently introduced the term classical schizophrenia to describe cases with disorganized and impoverished mental activity, cognitive impairment and predisposition to persisting disability. Recent evidence reveals that a polygenic score indicating risk for schizophrenia predicts severity of the features of classical schizophrenia: disorganization, and to a lesser extent, impoverishment of mental activity and cognitive impairment. Current understanding of brain function attributes a cardinal role to predictive coding: the process of generating models of the world that are successively updated in light of confirmation or contradiction by subsequent sensory information. It has been proposed that abnormalities of these predictive processes account for delusions and hallucinations. Here we examine the evidence provided by electrophysiology and fMRI indicating that imprecise predictive coding is the core pathological process in classical schizophrenia, accounting for disorganization, psychomotor poverty and cognitive impairment. Functional imaging reveals aberrant brain activity at network hubs engaged during encoding of predictions. We discuss the possibility that frequent prediction errors might promote excess release of the neurotransmitter, dopamine, thereby accounting for the occurrence of episodes of florid psychotic symptoms including delusions and hallucinations in classical schizophrenia. While the predictive coding hypotheses partially accounts for the time-course of classical schizophrenia, the overall body of evidence indicates that environmental factors also contribute. We discuss the evidence that chronic inflammation is a mechanism that might link diverse genetic and environmental etiological factors, and contribute to the proposed imprecision of predictive coding.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33495122

RESUMO

BACKGROUND: There is emerging evidence for abnormal beta oscillations in psychosis. Beta oscillations are likely to play a key role in the coordination of sensorimotor information that is crucial to healthy mental function. Growing evidence suggests that beta oscillations typically manifest as transient beta bursts that increase in probability following a motor response, observable as post-movement beta rebound. Evidence indicates that post-movement beta rebound is attenuated in psychosis, with greater attenuation associated with greater symptom severity and impairment. Delineating the functional role of beta bursts therefore may be key to understanding the mechanisms underlying persistent psychotic illness. METHODS: We used concurrent electroencephalography and functional magnetic resonance imaging to identify blood oxygen level-dependent correlates of beta bursts during the n-back working memory task and intervening rest periods in healthy control participants (n = 30) and patients with psychosis (n = 48). RESULTS: During both task blocks and intervening rest periods, beta bursts phasically activated regions implicated in task-relevant content while suppressing currently tonically active regions. Patients showed attenuated post-movement beta rebound that was associated with persisting disorganization symptoms as well as impairments in cognition and role function. Patients also showed greater task-related reductions in overall beta burst rate and showed greater, more extensive, beta burst-related blood oxygen level-dependent activation. CONCLUSIONS: Our evidence supports a model in which beta bursts reactivate latently maintained sensorimotor information and are dysregulated and inefficient in psychosis. We propose that abnormalities in the mechanisms by which beta bursts coordinate reactivation of contextually appropriate content can manifest as disorganization, working memory deficits, and inaccurate forward models and may underlie a core deficit associated with persisting symptoms and impairment.


Assuntos
Ritmo beta , Transtornos Psicóticos , Ritmo beta/fisiologia , Encéfalo , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
3.
Neurosci Biobehav Rev ; 120: 509-525, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080250

RESUMO

BACKGROUND: Methylphenidate (MPH) is an efficacious treatment for ADHD but concerns have been raised about potential adverse effects of extended treatment on growth. OBJECTIVES: To systematically review the literature, up to December 2018, conducting a meta-analysis of association of long-term (> six months) MPH exposure with height, weight and timing of puberty. RESULTS: Eighteen studies (ADHD n = 4868) were included in the meta-analysis. MPH was associated with consistent statistically significant pre-post difference for both height (SMD = 0.27, 95% CI 0.16-0.38, p < 0.0001) and weight (SMD = 0.33, 95% CI 0.22-0.44, p < 0.0001) Z scores, with prominent impact on weight during the first 12 months and on height within the first 24-30 months. No significant effects of dose, formulation, age and drug-naïve condition as clinical moderators were found. Data on timing of puberty are currently limited. CONCLUSIONS: Long-term treatment with MPH can result in reduction in height and weight. However, effect sizes are small with possible minimal clinical impact. Long-term prospective studies may help to clarify the underlying biological drivers and specific mediators and moderators.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Peso Corporal , Estimulantes do Sistema Nervoso Central/uso terapêutico , Criança , Humanos , Metilfenidato/uso terapêutico , Estudos Prospectivos , Resultado do Tratamento
4.
Schizophr Bull Open ; 1(1): sgaa031, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803162

RESUMO

In the classical descriptions of schizophrenia, Kraepelin and Bleuler recognized disorganization and impoverishment of mental activity as fundamental symptoms. Their classical descriptions also included a tendency to persisting disability. The psychopathological processes underlying persisting disability in schizophrenia remain poorly understood. The delineation of a core deficit underlying persisting disability would be of value in predicting outcome and enhancing treatment. We tested the hypothesis that mental disorganization and impoverishment are associated with persisting impairments of cognition and role function, and together reflect a latent core deficit that is discernible in cases diagnosed by modern criteria. We used Confirmatory Factor Analysis to determine whether measures of disorganization, mental impoverishment, impaired cognition, and role functioning in 40 patients with schizophrenia represent a single latent variable. Disorganization scores were computed from the variance shared between disorganization measures from 3 commonly used symptom scales. Mental impoverishment scores were computed similarly. A single factor model exhibited a good fit, supporting the hypothesis that these measures reflect a core deficit. Persisting brain disorders are associated with a reduction in post-movement beta rebound (PMBR), the characteristic increase in electrophysiological beta amplitude that follows a motor response. Patients had significantly reduced PMBR compared with healthy controls. PMBR was negatively correlated with core deficit score. While the symptoms constituting impoverished and disorganized mental activity are dissociable in schizophrenia, nonetheless, the variance that these 2 symptom domains share with impaired cognition and role function, appears to reflect a pathophysiological process that might be described as the core deficit of classical schizophrenia.

5.
Mol Psychiatry ; 25(4): 873-882, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-29934548

RESUMO

In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate, and/or glutamine in the cerebral cortex, consistent with a post-inflammatory response, and that this reduction would be most marked in patients with "residual schizophrenia", in whom an early stage with positive psychotic symptoms has progressed to a late stage characterized by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender, and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton magnetic resonance spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal components analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excitotoxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness.


Assuntos
Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Esquizofrenia/metabolismo , Adulto , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Feminino , Glutamina/metabolismo , Giro do Cíngulo/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Espectroscopia de Prótons por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem
6.
Neurosci Biobehav Rev ; 107: 945-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545988

RESUMO

Methylphenidate (MPH), the most common medication for children with Attention Deficit/Hyperactivity Disorder (ADHD) in many countries, is often prescribed for long periods of time. Any long-term psychotropic treatment in childhood raises concerns about possible adverse neurological and psychiatric outcomes. We aimed to map current evidence regarding neurological and psychiatric outcomes, adverse or beneficial, of long-term MPH (> 1 year) treatment in ADHD. We coded studies using a "traffic light" system: Green: safe/favours MPH; Amber: warrants caution; Red: not safe/not well-tolerated. Un-categorisable study findings were coded as "Unclear". Although some evidence suggests an elevated risk of psychosis and tics, case reports describe remission on discontinuation. Several studies suggest that long-term MPH may reduce depression and suicide in ADHD. Evidence suggests caution in specific groups including pre-school children, those with tics, and adolescents at risk for substance misuse. We identified a need for more studies that make use of large longitudinal databases, focus on specific neuropsychiatric outcomes, and compare outcomes from long-term MPH treatment with outcomes following shorter or no pharmacological intervention.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metilfenidato/efeitos adversos , Encefalopatias/induzido quimicamente , Estimulantes do Sistema Nervoso Central/uso terapêutico , Humanos , Transtornos Mentais/induzido quimicamente , Metilfenidato/uso terapêutico , Fatores de Tempo
7.
Front Psychiatry ; 10: 235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105599

RESUMO

Objective: Structural and functional abnormalities have been noted in the prefrontal cortex of individuals with neurodevelopmental disorders such as attention deficit/hyperactivity disorder (ADHD). Cortical thickness and gyrification, both of which have been reported as abnormal in the prefrontal cortex in ADHD, are thought to be modulated by genetic influences during neural development. This study aimed to investigate the effects of a polymorphism of the dopamine DRD4 gene (the 7-repeat (7R) "risk" allele) on thickness and gyrification as distinct parameters of prefrontal cortical structure in children with ADHD. Method: Structural images and genetic samples were obtained from 49 children aged 9-15 years (25 with ADHD and 24 matched controls), and measures of cortical thickness and gyrification for inferior, middle, and superior frontal cortex were calculated. Results: A significant interaction between diagnosis and genotype on prefrontal gyrification was observed, largely driven by reduced inferior frontal gyrification in patients who carried the DRD4 7R allele. Furthermore, inferior frontal gyrification-but not thickness-related to everyday executive functioning in 7R allele carriers across groups. Conclusions: Prefrontal gyrification is reduced in children with ADHD who also carry the DRD4 7R allele, and it relates to critical functional skills in the executive domain in carriers of the risk allele. More broadly, these effects highlight the importance of considering precise neurodevelopmental mechanisms through which risk alleles influence cortical neurogenesis and migration.

8.
Schizophr Bull ; 45(4): 883-891, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30239878

RESUMO

INTRODUCTION: Schizophrenia and schizotypal personality disorder (SPD) lie on a single spectrum of mental illness and converging evidence suggests similarities in the etiology of the 2 conditions. However, schizotypy is a heterogeneous facet of personality in the healthy population and so may be seen as a bridge between health and mental illness. Neural evidence for such a continuity would have implications for the characterization and treatment of schizophrenia. Based on our previous work identifying a relationship between symptomology in schizophrenia and abnormal movement-induced electrophysiological response (the post-movement beta rebound [PMBR]), we predicted that if subclinical schizotypy arises from similar neural mechanisms to schizophrenia, schizotypy in healthy individuals would be associated with reduced PMBR. METHODS: One-hundred sixteen participants completed a visuomotor task while their neural activity was recorded by magnetoencephalography. Partial correlations were computed between a measure of PMBR extracted from left primary motor cortex and scores on the Schizotypal Personality Questionnaire (SPQ), a self-report measure of schizotypal personality. Correlations between PMBR and SPQ factor scores measuring cognitive-perceptual, interpersonal and disorganization dimensions of schizotypy were also computed. Effects of site, age, and sex were controlled for. RESULTS: We found a significant negative correlation between total SPQ score and PMBR. This was most strongly mediated by variance shared between interpersonal and disorganization factor scores. CONCLUSION: These findings indicate a continuum of neural deficit between schizotypy and schizophrenia, with diminution of PMBR, previously reported in schizophrenia, also measurable in individuals with schizotypal features, particularly disorganization and impaired interpersonal relations.


Assuntos
Ritmo beta/fisiologia , Córtex Cerebral/fisiopatologia , Desempenho Psicomotor/fisiologia , Transtorno da Personalidade Esquizotípica/fisiopatologia , Adulto , Eletromiografia , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Esquizofrenia/fisiopatologia , Adulto Jovem
9.
J Neurophysiol ; 120(6): 3122-3130, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30354795

RESUMO

Functional activity in the human brain is intrinsically organized into independently active, connected brain regions. These networks include sensorimotor systems, as well as higher-order cognitive networks such as the default mode network (DMN), which dominates activity when the brain is at rest, and the frontoparietal (FPN) and salience (SN) networks, which are often engaged during demanding tasks. Evidence from functional magnetic resonance imaging (fMRI) suggests that although sensory systems are mature by the end of childhood, the integrity of the FPN and SN develops throughout adolescence. There has been little work to corroborate these findings with electrophysiology. Using magnetoencephalography (MEG) recordings of 48 participants (aged 9-25 yr) at rest, we find that beta-band functional connectivity within the FPN, SN, and DMN continues to increase through adolescence, whereas connectivity in the visual system is mature by late childhood. In contrast to fMRI results, but replicating the MEG findings of Schäfer et al. (Schäfer CB, Morgan BR, Ye AX, Taylor MJ, Doesburg SM. Hum Brain Mapp 35: 5249-5261, 2014), we also see that connectivity between networks increases rather than decreases with age. This suggests that the development of coordinated beta-band oscillations within and between higher-order cognitive networks through adolescence might contribute to the developing abilities of adolescents to focus their attention and coordinate diverse aspects of mental activity. NEW & NOTEWORTHY Using magnetoencephalography to assess beta frequency oscillations, we show that functional connectivity within higher-order cognitive networks increases from childhood, reaching adult values by age 20 yr. In contrast, connectivity within a primary sensory (visual) network reaches adult values by age 14 yr. In contrast to functional MRI findings, connectivity between cognitive networks matures at a rate similar to within-network connectivity, suggesting that coordination of beta oscillations both within and between networks is associated with maturation of cognitive skills.


Assuntos
Ondas Encefálicas , Encéfalo/crescimento & desenvolvimento , Adolescente , Adulto , Encéfalo/fisiologia , Criança , Cognição , Feminino , Humanos , Masculino , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia
10.
Neuroimage Clin ; 20: 228-235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090697

RESUMO

The healthy brain is able to maintain a stable balance between bottom-up sensory processing and top-down cognitive control. The neurotransmitter acetylcholine plays a substantial role in this. Disruption of this balance could contribute to symptoms occurring in psychosis, including subtle disruption of motor control and aberrant appropriation of salience to external stimuli; however the pathological mechanisms are poorly understood. On account of the role beta oscillations play in mediating cognitive control, investigation of beta oscillations is potentially informative about such mechanisms. Here, we used magnetoencephalography to investigate the effect of the acetylcholinesterase-inhibitor, galantamine, on beta oscillations within the sensorimotor region during both a sensorimotor task and a relevance-modulation task in healthy participants, employing a double blind randomized placebo controlled cross-over design. In the galantamine condition, we found a significant reduction in the post-movement beta rebound in the case of executed movements and also in a planned but not executed movement. In the latter case, the effect was significantly greater following task-relevant compared with irrelevant stimuli. The results suggest that the action of galantamine reduces the influence of top-down cognitive processing relative to bottom-up perceptual processing in a manner resembling changes previously reported in schizophrenia.


Assuntos
Ritmo beta/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Galantamina/farmacologia , Nootrópicos/farmacologia , Adulto , Ritmo beta/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Método Duplo-Cego , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Galantamina/uso terapêutico , Humanos , Masculino , Nootrópicos/uso terapêutico , Estimulação Luminosa/métodos , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto Jovem
11.
Neuroimage ; 174: 563-575, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524625

RESUMO

Network connectivity is an integral feature of human brain function, and characterising its maturational trajectory is a critical step towards understanding healthy and atypical neurodevelopment. Here, we used magnetoencephalography (MEG) to investigate both stationary (i.e. time averaged) and rapidly modulating (dynamic) electrophysiological connectivity, in participants aged from mid-childhood to early adulthood (youngest participant 9 years old; oldest participant 25 years old). Stationary functional connectivity (measured via inter-regional coordination of neural oscillations) increased with age in the alpha and beta frequency bands, particularly in bilateral parietal and temporo-parietal connections. Our dynamic analysis (also applied to alpha/beta oscillations) revealed the spatiotemporal signatures of 8 dynamic networks; these modulate on a ∼100 ms time scale, and temporal stability in attentional networks was found to increase with age. Significant overlap was found between age-modulated dynamic networks and inter-regional oscillatory coordination, implying that altered network dynamics underlie age related changes in functional connectivity. Our results provide novel insights into brain network electrophysiology, and lay a foundation for future work in childhood disorders.


Assuntos
Ritmo alfa , Ritmo beta , Encéfalo/crescimento & desenvolvimento , Adolescente , Adulto , Envelhecimento , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Vias Neurais/crescimento & desenvolvimento , Adulto Jovem
12.
J Autism Dev Disord ; 47(5): 1496-1509, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28255758

RESUMO

This study investigated the neurobiological basis of comorbidity between autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). We compared children with ASD, ADHD or ADHD+ASD and typically developing controls (CTRL) on behavioural and electrophysiological correlates of gaze cue and face processing. We measured effects of ASD, ADHD and their interaction on the EDAN, an ERP marker of orienting visual attention towards a spatially cued location and the N170, a right-hemisphere lateralised ERP linked to face processing. We identified atypical gaze cue and face processing in children with ASD and ADHD+ASD compared with the ADHD and CTRL groups. The findings indicate a neurobiological basis for the presence of comorbid ASD symptoms in ADHD. Further research using larger samples is needed.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtorno do Espectro Autista/psicologia , Reconhecimento Facial , Fixação Ocular , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Espectro Autista/fisiopatologia , Criança , Comorbidade , Sinais (Psicologia) , Feminino , Humanos , Masculino
13.
Neuroimage Clin ; 12: 869-878, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872809

RESUMO

Subtle disturbances of visual and motor function are known features of schizophrenia and can greatly impact quality of life; however, few studies investigate these abnormalities using simple visuomotor stimuli. In healthy people, electrophysiological data show that beta band oscillations in sensorimotor cortex decrease during movement execution (event-related beta desynchronisation (ERBD)), then increase above baseline for a short time after the movement (post-movement beta rebound (PMBR)); whilst in visual cortex, gamma oscillations are increased throughout stimulus presentation. In this study, we used a self-paced visuomotor paradigm and magnetoencephalography (MEG) to contrast these responses in patients with schizophrenia and control volunteers. We found significant reductions in the peak-to-peak change in amplitude from ERBD to PMBR in schizophrenia compared with controls. This effect was strongest in patients who made fewer movements, whereas beta was not modulated by movement in controls. There was no significant difference in the amplitude of visual gamma between patients and controls. These data demonstrate that clear abnormalities in basic sensorimotor processing in schizophrenia can be observed using a very simple MEG paradigm.


Assuntos
Córtex Cerebral/fisiopatologia , Desempenho Psicomotor , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto , Ondas Encefálicas , Feminino , Humanos , Magnetoencefalografia , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
14.
Neuroimage ; 132: 425-438, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908313

RESUMO

Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between neural oscillations within a large range of different frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral network hierarchy likely helps to mediate simultaneous formation of multiple brain networks, which support ongoing task demand. However, to date it has been largely overlooked, with many electrophysiological functional connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope based functional connectivity metrics with a multi-layer network framework in order to derive a more complete picture of connectivity within and between frequencies. We test this methodology using MEG data recorded during a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band, visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy controls. We further show that these connectivity differences are predictive of the severity of persistent symptoms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia.


Assuntos
Mapeamento Encefálico/métodos , Ondas Encefálicas , Encéfalo/fisiologia , Magnetoencefalografia , Redes Neurais de Computação , Adulto , Ritmo alfa , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Lobo Occipital , Esquizofrenia/fisiopatologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
15.
Hum Brain Mapp ; 37(4): 1361-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26853904

RESUMO

Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long-range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks.


Assuntos
Ritmo beta/fisiologia , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Distribuição Aleatória , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
16.
Psychiatry Res ; 233(2): 225-32, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-26190555

RESUMO

Although previous morphological studies have demonstrated abnormalities in prefrontal cortical thickness in children with attention deficit/hyperactivity disorder (ADHD), studies investigating cortical surface area are lacking. As the development of cortical surface is closely linked to the establishment of thalam-ocortical connections, any abnormalities in the structure of the thalamus are likely to relate to altered cortical surface area. Using a clinically well-defined sample of children with ADHD (n = 25, 1 female) and typically developing controls (n = 24, 1 female), we studied surface area across the cortex to determine whether children with ADHD had reduced thalamic volume that related to prefrontal cortical surface area. Relative to controls, children with ADHD had a significant reduction in thalamic volume and dorsolateral prefrontal cortical area in both hemispheres. Furthermore, children with ADHD with smaller thalamic volumes were found to have greater reductions in surface area, a pattern not evident in the control children. Our results are further evidence of reduced lateral prefrontal cortical area in ADHD. Moreover, for the first time, we have also shown a direct association between thalamic anatomy and frontal anatomy in ADHD, suggesting the pathophysiological process that alters surface area maturation is likely to be linked to the development of the thalamus.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Tálamo/patologia , Tálamo/fisiopatologia , Adolescente , Atenção/fisiologia , Criança , Feminino , Humanos , Masculino , Tamanho do Órgão/fisiologia , Valores de Referência
17.
Psychiatry Res ; 232(3): 250-6, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25957017

RESUMO

An imbalance in neural activity within large-scale networks appears to be an important pathophysiological aspect of depression. Yet, there is little consensus regarding the abnormality within the default mode network (DMN) in major depressive disorder (MDD). In the present study, 16 first-episode, medication-naïve patients with MDD and 16 matched healthy controls underwent functional magnetic resonance imaging (fMRI) at rest. With the precuneus (a central node of the DMN) as a seed region, functional connectivity (FC) was measured across the entire brain. The association between the FC of the precuneus and overall symptom severity was assessed using the Hamilton Depression Rating Scale. Patients with MDD exhibited a more negative relationship between the precuneus and the non-DMN regions, including the sensory processing regions (fusiform gyrus, postcentral gyrus) and the secondary motor cortex (supplementary motor area and precentral gyrus). Moreover, greater severity of depression was associated with greater anti-correlation between the precuneus and the temporo-parietal junction as well as stronger positive connectivity between the precuneus and the dorsomedial prefrontal cortex. These results indicate that dissociated large-scale networks of the precuneus may contribute to the clinical expression of depression in MDD.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Rede Nervosa/fisiopatologia , Lobo Parietal/fisiopatologia , Adulto , Transtorno Depressivo Maior/diagnóstico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Índice de Gravidade de Doença
18.
PLoS One ; 10(4): e0124577, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922945

RESUMO

Functional brain signals are frequently decomposed into a relatively small set of large scale, distributed cortical networks that are associated with different cognitive functions. It is generally assumed that the connectivity of these networks is static in time and constant over the whole network, although there is increasing evidence that this view is too simplistic. This work proposes novel techniques to investigate the contribution of spontaneous BOLD events to the temporal dynamics of functional connectivity as assessed by ultra-high field functional magnetic resonance imaging (fMRI). The results show that: 1) spontaneous events in recognised brain networks contribute significantly to network connectivity estimates; 2) these spontaneous events do not necessarily involve whole networks or nodes, but clusters of voxels which act in concert, forming transiently synchronising sub-networks and 3) a task can significantly alter the number of localised spontaneous events that are detected within a single network. These findings support the notion that spontaneous events are the main driver of the large scale networks that are commonly detected by seed-based correlation and ICA. Furthermore, we found that large scale networks are manifestations of smaller, transiently synchronising sub-networks acting dynamically in concert, corresponding to spontaneous events, and which do not necessarily involve all voxels within the network nodes oscillating in unison.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/sangue , Adulto , Encéfalo/metabolismo , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Radiografia , Adulto Jovem
19.
PLoS One ; 10(4): e0120991, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25886553

RESUMO

This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of 'disorder' in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices).


Assuntos
Magnetoencefalografia , Esquizofrenia/fisiopatologia , Antipsicóticos/uso terapêutico , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos de Casos e Controles , Córtex Cerebral/fisiopatologia , Entropia , Humanos , Processamento de Imagem Assistida por Computador , Rede Nervosa/fisiopatologia , Esquizofrenia/tratamento farmacológico , Razão Sinal-Ruído
20.
Eur Neuropsychopharmacol ; 24(11): 1784-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25219936

RESUMO

Recent work has identified disruption of several brain networks involving limbic and cortical regions that contribute to the generation of diverse symptoms of major depressive disorder (MDD). Of particular interest are the networks anchored on the right anterior insula, which binds the cortical and limbic regions to enable key functions that integrate bottom-up and top-down information in emotional and cognitive processing. Emotional appraisal has been linked to a presumed hierarchy of processing, from sensory percepts to affective states. But it is unclear whether the network level dysfunction seen in depression relates to a breakdown of this presumed hierarchical processing system from sensory to higher cognitive regions, mediated by core limbic regions (e.g. insula). In 16 patients with current MDD, and 16 healthy controls, we investigated differences in directional influences between anterior insula and the rest of the brain using resting-state functional magnetic resonance imaging (fMRI) and Granger-causal analysis (GCA), using anterior insula as a seed region. Results showed a failure of reciprocal influence between insula and higher frontal regions (dorsomedial prefrontal cortex) in addition to a weakening of influences from sensory regions (pulvinar and visual cortex) to the insula. This suggests dysfunction of both sensory and putative self-processing regulatory loops centered around the insula in MDD. For the first time, we demonstrate a network-level processing defect extending from sensory to frontal regions through insula in depression. Within limitations of inferences drawn from GCA of resting fMRI, we offer a novel framework to advance targeted network modulation approaches to treat depression.


Assuntos
Córtex Cerebral/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Pulvinar/fisiopatologia , Córtex Visual/fisiopatologia , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Pulvinar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...