Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422149

RESUMO

Hydrogen separation membranes are one of the most promising technologies for hydrogen purification. The development of high-entropy alloys (HEAs) for hydrogen separation membranes is driven by a "cocktail effect" of elements with different hydrogen affinities to prevent hydride formation and retain high permeability due to the single-phase BCC structure. In this paper, equimolar and non-equimolar Nb-Ni-Ti-Zr-Co high entropy alloys were fabricated by arc melting. The microstructure and phase composition of the alloys were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The hydrogen permeation experiments were performed at 300-500 °C and a hydrogen pressure of 4 bar. In order to estimate the effect of composition and lattice structure on hydrogen location and diffusivity in Nb-Ni-Ti-Zr-Co alloy, ab initio calculations of hydrogen binding energy were performed using virtual crystal approximation. It was found that Nb-enriched and near equimolar BCC phases were formed in Nb20Ni20Ti20Zr20Co20 HEA while Nb-enriched BCC and B2-Ni(Ti, Zr) were formed in Nb40Ni25Ti18Zr12Co5 alloy. Hydrogen permeability tests showed that Nb20Ni20Ti20Zr20Co20 HEA shows lower activation energy and higher permeability at lower temperatures as well as higher resistance to hydrogen embrittlement compared to Nb40Ni25Ti18Zr12Co5 alloy. The effect of composition, microstructure and hydrogen binding energies on permeability of the fabricated alloys was discussed.

2.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431490

RESUMO

With the increasing energy crisis and environmental problems, there is an urgent need to seek an efficient renewable energy source, and hydrogen energy is considered one of the most promising energy carriers. Magnesium is considered a promising hydrogen storage material due to its high hydrogen storage density, abundant resources, and low cost. However, sluggish kinetic performance is one of the bottlenecks hindering its practical application. The kinetic process of hydrogenation/dehydrogenation can be influenced by both external and internal factors, including temperature, pressure, elementary composition, particle size, particle surface states, irregularities in particle structure, and hydrogen diffusion coefficient. The kinetic performance of the MgH2/Mg system can be effectively improved by more active sites and nucleation centers for hydrogen absorption and desorption. Herein, we briefly review and discuss the experimentally observed nucleation and growth behavior of Mg/MgH2 during de/hydrogenation of MgH2/Mg. In particular, the nucleation and growth behavior of MgH2 during the hydrogenation of Mg is discussed from the aspect of temperature and hydrogen pressure.

3.
Materials (Basel) ; 15(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269054

RESUMO

The current work is devoted to developing a system for the complex research of metal-hydrogen systems, including in an in situ mode. The system consists of a controlled gas reactor with a unique reaction chamber, a radioisotope positron source, and a positron annihilation spectroscopy complex. The use of the system enables in situ investigation of the defect structure of solids in hydrogen sorption-desorption processes at temperatures up to 900 °C and pressures up to 50 bar. Experimental investigations of magnesium and magnesium hydride during thermal annealing were carried out to approve the possibilities of the developed complex. It was shown that one cycle of magnesium hydrogenation-dehydrogenation resulted in the accumulation of irreversible hydrogen-induced defects. The defect structure investigation of the magnesium-hydrogen system by positron annihilation techniques was supplemented with a comprehensive study by scanning electron microscopy, X-ray diffraction analysis, and hydrogen sorption-desorption studies.

4.
Materials (Basel) ; 14(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34832140

RESUMO

This paper presents the results of microstructural analysis of novel preceramic paper-derived SiCf/SiC composites fabricated by spark plasma sintering. The sintering temperature and pressure were 2100/2200 °C and 60/100 MPa, respectively. The content of fibers in the composites was approx. 10 wt %. The SiCf/SiC composites were analyzed by positron annihilation methods, X-ray diffraction technology, scanning electron microscopy, and Raman spectroscopy. Longer sintering time causes the proportion of the 6H-SiC composition to increase to ~80%. The increase in sintering temperature from 2100 °C to 2200 °C leads to partial transition of 4H-SiC to 6H-SiC during the sintering process, and the long-life component of positrons indicates the formation of Si vacancies. The Raman characteristic peaks of turbostratic graphite appear in the Raman spectrum of SiC fibers, this is caused by the diffusion of carbon from the surface of the SiC fiber and the preceramic paper during the high-temperature sintering process.

5.
Materials (Basel) ; 14(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34772219

RESUMO

This work aims to investigate the 64Cu isotope applicability for positron annihilation experiments in in situ mode. We determined appropriate characteristics of this isotope for defect studies and implemented them under aggressive conditions (i.e., elevated temperature, hydrogen environment) in situ to determine the sensitivity of this approach to thermal vacancies and hydrogen-induced defects investigation. Titanium samples were used as test materials. The source was obtained by the activation of copper foil in the thermal neutron flux of a research nuclear reactor. Main spectrometric characteristics (e.g., the total number of counts, fraction of good signals, peak-to-noise ratio) of this source, as well as line-shaped parameters of the Doppler broadening spectrum (DBS), were studied experimentally. These characteristics for 64Cu (in contrast to positron sources with longer half-life) were shown to vary strongly with time, owing to the rapidly changing activity. These changes are predictable and should be considered in the analysis of experimental data to reveal information about the defect structure. The investigation of samples with a controlled density of defects revealed the suitability of 64Cu positron source with an activity of 2-40 MBq for defects studies by DBS. However, greater isotope activity could also be applied. The results of testing this source at high temperatures and in hydrogen atmosphere showed its suitability to thermal vacancies and hydrogen-induced defects studies in situ. The greatest changes in the defect structure of titanium alloy during high-temperature hydrogen saturation occurred at the cooling stage, when the formation of hydrides began, and were associated with an increase in the dislocation density.

6.
Materials (Basel) ; 13(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013159

RESUMO

Ceramic matrix composites (CMCs) based on silicon carbide (SiC) are promising materials for applications as structural components used under high irradiation flux and high temperature conditions. The addition of SiC fibers (SiCf) may improve both the physical and mechanical properties of CMCs and lead to an increase in their tolerance to failure. This work describes the fabrication and characterization of novel preceramic paper-derived SiCf/SiCp composites fabricated by spark plasma sintering (SPS). The sintering temperature and pressure were 2100 °C and 20-60 MPa, respectively. The content of fibers in the composites was approx. 10 wt.%. The matrix densification and fiber distribution were examined by X-ray computed tomography and scanning electron microscopy. Short processing time avoided the destruction of SiC fibers during SPS. The flexural strength of the fabricated SiCf/SiCp composites at room temperature varies between 300 and 430 MPa depending on the processing parameters and microstructure of the fabricated composites. A quasi-ductile fracture behavior of the fabricated composites was observed.

7.
Nanomaterials (Basel) ; 10(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024092

RESUMO

Many researchers have carried out experimental research and theoretical analysis on hydrogen storage in carbon nanotubes (CNTs), but the results are very inconsistent. The present paper reviewed recent progress in improving the hydrogen storage properties of CNTs by various modifications and analyzed the hydrogen storage mechanism of CNTs. It is certain that the hydrogen storage in CNTs is the result of the combined action of physisorption and chemisorption. However, H2 adsorption on metal-functionalized CNTs still lacks a consistent theory. In the future, the research of CNTs for hydrogen adsorption should be developed in the following three directions: (1) A detailed study of the optimum number of metal atoms without aggregation on CNT should be performed, at the same time suitable preparation methods for realizing controllable doping site and doped configurations should be devised; (2) The material synthesis, purification, and activation methods have to be optimized; (3) Active sites, molecular configurations, effectively accessible surface area, pore size, surface topology, chemical composition of the surface, applied pressure and temperature, defects and dopant, which are some of the important factors that strongly affect the hydrogen adsorption in CNTs, should be better understood.

8.
Materials (Basel) ; 12(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052204

RESUMO

Hydrogen accumulation and distribution in pipeline steel under conditions of enhanced corrosion has been studied. The XRD analysis, optical spectrometry and uniaxial tension tests reveal that the corrosion environment affects the parameters of the inner and outer surface of the steel pipeline as well as the steel pipeline bulk. The steel surface becomes saturated with hydrogen released as a reaction product during insignificant methane dissociation. Measurements of the adsorbed hydrogen concentration throughout the steel pipe bulk were carried out. The pendulum impact testing of Charpy specimens was performed at room temperature in compliance with national standards. The mechanical properties of the steel specimens were found to be considerably lower, and analogous to the properties values caused by hydrogen embrittlement.

9.
Materials (Basel) ; 11(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747471

RESUMO

Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °Ð¡ at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

10.
Nanomaterials (Basel) ; 8(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324712

RESUMO

The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA