Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biophys J ; 112(10): 2147-2158, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538152

RESUMO

Mitochondria are crucial compartments of eukaryotic cells because they function as the cellular power plant and play a central role in the early stages of programmed cell death (apoptosis). To avoid undesired cell death, this apoptotic pathway is tightly regulated by members of the Bcl-2 protein family, which interact on the external surface of the mitochondria, i.e., the mitochondrial outer membrane (MOM), and modulate its permeability to apoptotic factors, controlling their release into the cytosol. A growing body of evidence suggests that the MOM lipids play active roles in this permeabilization process. In particular, oxidized phospholipids (OxPls) formed under intracellular stress seem to directly induce apoptotic activity at the MOM. Here we show that the process of MOM pore formation is sensitive to the type of OxPls species that are generated. We created MOM-mimicking liposome systems, which resemble the cellular situation before apoptosis and upon triggering of oxidative stress conditions. These vesicles were studied using 31P solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy and differential scanning calorimetry, together with dye leakage assays. Direct polarization and cross-polarization nuclear magnetic resonance experiments enabled us to probe the heterogeneity of these membranes and their associated molecular dynamics. The addition of apoptotic Bax protein to OxPls-containing vesicles drastically changed the membranes' dynamic behavior, almost completely negating the previously observed effect of temperature on the lipids' molecular dynamics and inducing an ordering effect that led to more cooperative membrane melting. Our results support the hypothesis that the mitochondrion-specific lipid cardiolipin functions as a first contact site for Bax during its translocation to the MOM in the onset of apoptosis. In addition, dye leakage assays revealed that different OxPls species in the MOM-mimicking vesicles can have opposing effects on Bax pore formation.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Varredura Diferencial de Calorimetria , Cardiolipinas/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli , Corantes Fluorescentes , Humanos , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estresse Oxidativo/fisiologia , Fosfolipídeos/metabolismo , Temperatura , Lipossomas Unilamelares/química
2.
Biochim Biophys Acta ; 1858(6): 1288-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947183

RESUMO

Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface.


Assuntos
Membranas Mitocondriais/metabolismo , Fosforilcolina/análogos & derivados , Proteína X Associada a bcl-2/metabolismo , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Oxirredução , Permeabilidade , Fosforilcolina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Lipossomas Unilamelares
3.
Faraday Discuss ; 161: 499-513; discussion 563-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805755

RESUMO

Membranes undergo severe changes under oxidative stress conditions due to the creation of oxidized phospholipid (OxPL) species, which possess molecular properties quite different from their parental lipid components. These OxPLs play crucial roles in various pathological disorders and their occurrence is involved in the onset of intrinsic apoptosis, a fundamental pathway in programmed mammalian cell death. However, the molecular mechanisms by which these lipids can exert their apoptotic action via their host membranes (e.g., altering membrane protein function) are poorly understood. Therefore, we studied the impact of OxPLs on the organization and biophysical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) based lipid membranes by differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy. Incorporation of defined OxPLs with either a carboxyl group (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC)) or aldehyde (1-palmitoyl-(9'oxononanoyl)-sn-glycero-3-phosphocholine (PoxnoPC)) at their truncated sn-2-chain ends enabled us to reveal OxPL species-dependent differences. The calorimetric studies revealed significant effects of OxPLs on the thermotropic phase behavior of DMPC bilayers, especially at elevated levels where PazePC induced more pronounced effects than PoxnoPC. Temperature-dependent changes in the solid state 31P NMR spectra, which provided information of the lipid headgroup region in these mixed membrane systems, reflected this complex phase behavior. In the temperature region between 293 K (onset of the Lalpha-phase) and 298 K, two overlapping NMR spectra were visible which reflect the co-existence of two liquid-crystalline lamellar phases with presumably one reflecting OxPL-poor domains and the other OxPL-rich domains. Deconvolution of the DSC profiles also revealed these two partially overlapping thermal events. In addition, a third thermal, non-NMR-visible, event occurred at low temperatures, which can most likely be associated to a solid-phase mixing/demixing process of the OxPL-containing membranes. The observed phase transitions were moved to higher temperatures in the presence of heavy water due its condensing effect, where additional wideline 2H-NMR studies revealed a complex hydration pattern in the presence of OxPLs.


Assuntos
Lipídeos de Membrana/química , Fosfolipídeos/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/metabolismo , Oxirredução , Fosfolipídeos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Temperatura
4.
PLoS One ; 8(4): e61452, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626686

RESUMO

The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2) protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax), are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM) and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD) spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23)-lauryl-ether (Brij-35) detergent at a level below its critical micelle concentration (CMC). Additional surface plasmon resonance (SPR) measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2) to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC). Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.


Assuntos
Detergentes/química , Bicamadas Lipídicas/química , Proteolipídeos/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína X Associada a bcl-2/química , Antimicina A/química , Dicroísmo Circular , Dimiristoilfosfatidilcolina/química , Eletroforese em Gel de Poliacrilamida , Humanos , Micelas , Octoxinol/química , Polietilenoglicóis/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície , Proteína Killer-Antagonista Homóloga a bcl-2/isolamento & purificação , Proteína X Associada a bcl-2/isolamento & purificação
5.
Biochim Biophys Acta ; 1818(11): 2718-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22705638

RESUMO

Activation of the pro-apoptotic protein Bax under intracellular oxidative stress is closely related to its association with the mitochondrial outer membrane (MOM) system, ultimately resulting in cell death. The precise mechanism by which this activation and the subsequent structural changes in the protein occur is currently unknown. In addition to triggering the onset of apoptosis, oxidative stress generates oxidized lipids whose impact on mitochondrial membrane integrity and the activity of membrane-associated Bax is unclear. We therefore devised a model system that mimics oxidative stress conditions by incorporating oxidized phospholipids (OxPls) into mitochondria-like liposomes, and studied the OxPls' impact on Bax-membrane interactions. Differential scanning calorimetry (DSC) was used to study membrane organization and protein stability, while conformational changes in the protein upon contact with lipid vesicles were monitored using far-UV circular dichroism (CD) spectroscopy. The thermograms for liposomes containing the OxPl 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) differed dramatically from those for unmodified liposomes. Moreover, Bax exhibited enhanced thermal stability in the presence of the modified liposomes, indicating that it interacted strongly with PazePC-containing membranes. The presence of PazePC also increased the α-helical character of Bax compared to the protein alone or with PazePC-free vesicles, at 10°C, 20°C, and 37°C. Presumably, the presence of PazePC-like OxPls a) increases the population of membrane-associated Bax and b) facilitates the protein's insertion into the membrane by distorting the bilayer's organization, as seen by solid-state high-resolution (1)H and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Fosforilcolina/análogos & derivados , Proteína X Associada a bcl-2/metabolismo , Apoptose , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Espectroscopia de Ressonância Magnética , Estresse Oxidativo , Fosforilcolina/farmacologia , Ligação Proteica , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...