Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400703, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824387

RESUMO

The integration of optoelectronic devices, such as transistors and photodetectors (PDs), into wearables and textiles is of great interest for applications such as healthcare and physiological monitoring. These require flexible/wearable systems adaptable to body motions, thus materials conformable to non-planar surfaces, and able to maintain performance under mechanical distortions. Here, fibre PDs are prepared by combining rolled graphene layers and photoactive perovskites. Conductive fibres (~500 Ωcm-1) are made by rolling single-layer graphene (SLG) around silica fibres, followed by deposition of a dielectric layer (Al2O3 and parylene C), another rolled SLG as a channel, and perovskite as photoactive component. The resulting gate-tunable PD has a response time~9ms, with an external responsivity~22kAW-1 at 488nm for a 1V bias. The external responsivity is two orders of magnitude higher, and the response time one order of magnitude faster, than state-of-the-art wearable fibre-based PDs. Under bending at 4mm radius, up to~80% photocurrent is maintained. Washability tests show~72% of initial photocurrent after 30 cycles, promising for wearable applications.

2.
Opt Express ; 31(19): 30847-30862, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710618

RESUMO

This paper presents a simulation-based analysis on the performance of plasmonic ferroelectric Mach-Zehnder in a ring (MZIR) versus symmetric Mach-Zehnder modulators (MZMs) on Si3N4 targeting O-band operation. The detailed investigation reveals the tradeoff between Au and Ag legacy noble metals providing lower modulator losses and CMOS compatible Cu featuring low cost. The numerical models also show that by opting for the MZIR layout there is a reduction in the Vπ x L product of 46% for Ag, 39% for Au and 30% for Cu versus MZMs. Time-domain simulations verify the successful generation of 112 Gbaud PAM-4 Signals from both MZIRs and MZMs for as low as 2 × 1.3 Vpp and 5µm long plasmonic phase shifters (PSs) with MZIRs providing a ΔQ signal improvement over MZMs of 2.9, 2.4, and 1.3 for Ag, Au, and Cu metals respectively. To the best of our knowledge, this is the first theoretical demonstration of such a low-loss, low-voltage, high-speed, and CMOS compatible plasmonic modulator on Si3N4, in the O-band.

3.
Nat Commun ; 8: 14311, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139766

RESUMO

There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K-1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K-1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K-1, and the ability to resolve temperature variations down to 15 µK.

4.
Nano Lett ; 16(1): 8-20, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26666842

RESUMO

The combination of plasmonic nanoparticles and graphene enhances the responsivity and spectral selectivity of graphene-based photodetectors. However, the small area of the metal-graphene junction, where the induced electron-hole pairs separate, limits the photoactive region to submicron length scales. Here, we couple graphene with a plasmonic grating and exploit the resulting surface plasmon polaritons to deliver the collected photons to the junction region of a metal-graphene-metal photodetector. This gives a 400% enhancement of responsivity and a 1000% increase in photoactive length, combined with tunable spectral selectivity. The interference between surface plasmon polaritons and the incident wave introduces new functionalities, such as light flux attraction or repulsion from the contact edges, enabling the tailored design of the photodetector's spectral response. This architecture can also be used for surface plasmon biosensing with direct-electric-redout, eliminating the need of bulky optics.


Assuntos
Técnicas Biossensoriais , Grafite/química , Metais/química , Nanopartículas/química , Luz , Nanotecnologia/métodos , Fótons , Ressonância de Plasmônio de Superfície
5.
Nanotechnology ; 26(15): 155301, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25800030

RESUMO

Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications.

6.
Nano Lett ; 14(7): 3733-42, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24884339

RESUMO

Graphene's high mobility and Fermi velocity, combined with its constant light absorption in the visible to far-infrared range, make it an ideal material to fabricate high-speed and ultrabroadband photodetectors. However, the precise mechanism of photodetection is still debated. Here, we report wavelength and polarization-dependent measurements of metal-graphene-metal photodetectors. This allows us to quantify and control the relative contributions of both photothermo- and photoelectric effects, both adding to the overall photoresponse. This paves the way for a more efficient photodetector design for ultrafast operating speeds.

7.
Nano Lett ; 12(1): 259-63, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22132841

RESUMO

The photosensitivity of nanocomposite AlN films with embedded silver nanospheres is reported. It stems from localized surface plasmon resonances (LSPR) whose modulation is photoinduced by laser annealing that induces a combined effect of metallic nanoparticle enlargement and dielectric matrix recrystallization; the photoindunced changes of the refractive index of the matrix result in strong spectral shift of LSPR. We demonstrate the utilization of this process for spectrally selective optical encoding into hard, durable, and chemically inert films.


Assuntos
Compostos Inorgânicos/química , Compostos Inorgânicos/efeitos da radiação , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Dureza , Armazenamento e Recuperação da Informação/métodos , Luz , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação
8.
Nano Lett ; 7(9): 2711-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17713959

RESUMO

We investigate graphene and graphene layers on different substrates by monochromatic and white-light confocal Rayleigh scattering microscopy. The image contrast depends sensitively on the dielectric properties of the sample as well as the substrate geometry and can be described quantitatively using the complex refractive index of bulk graphite. For a few layers (<6), the monochromatic contrast increases linearly with thickness. The data can be adequately understood by considering the samples behaving as a superposition of single sheets that act as independent two-dimensional electron gases. Thus, Rayleigh imaging is a general, simple, and quick tool to identify graphene layers, which is readily combined with Raman scattering, that provides structural identification.


Assuntos
Grafite/química , Teste de Materiais/métodos , Microscopia/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Refratometria/métodos , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 2): 056602, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16089663

RESUMO

We study point defect geometries in inverted opal photonic crystals that can be easily fabricated by means of colloidal self-assembly. Two broad classes of defects are considered: substitutional and interstitial. Substitutional point defects are found to introduce a usable defect band into the photonic band gap. This can be done by using a silica sphere of radius between 0.33a and 0.35a (where a is the lattice constant). The state is triply degenerate. Reflectance and local density of states calculations are performed to verify the existence and frequency of this defect. The point defect can be made by precoating shrunk silica spheres with a thin layer of silicon. Such a defect can be used as a microcavity for localizing light at a point, with a quality factor Q that is limited primarily by the proximity of the defect to the surface of the photonic crystal and other such defects.

10.
Phys Rev Lett ; 95(6): 063901, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16090954

RESUMO

A class of axially uniform waveguides is introduced, employing a new mechanism to guide light inside a low-index dielectric material without the use of photonic band gap, and simultaneously exhibiting subwavelength modal size and very slow group velocity over an unusually large frequency bandwidth. Their basis is the presence of plasmonic modes on the interfaces between dielectric regions and the flat unpatterned surface of a bulk metallic substrate. These novel waveguides allow for easy broadband coupling and exhibit absorption losses limited only by the intrinsic loss of the metal.

11.
Phys Rev Lett ; 91(2): 023902, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12906480

RESUMO

Using a symmetry-based approach, we have designed polarization-independent waveguides in a 3D photonic crystal. A comprehensive series of numerical experiments, involving the propagation of pulsed signals through long straight waveguide sections and sharp bends, quantitatively evaluates the bend-transmission coefficient over the entire bandwidth of the corresponding guided modes. High (approximately 95%) polarization-independent bend transmission is achieved within a certain frequency range.

12.
Phys Rev Lett ; 87(8): 086104, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-11497965

RESUMO

A hybrid molecular-dynamics (MD) and finite-element simulation approach is used to study stress distributions in silicon/silicon-nitride nanopixels. The hybrid approach provides atomistic description near the interface and continuum description deep into the substrate, increasing the accessible length scales and greatly reducing the computational cost. The results of the hybrid simulation are in good agreement with full multimillion-atom MD simulations: atomic structures at the lattice-mismatched interface between amorphous silicon nitride and silicon induce inhomogeneous stress patterns in the substrate that cannot be reproduced by a continuum approach alone.

13.
Artigo em Inglês | MEDLINE | ID: mdl-11031643

RESUMO

We numerically examine the time-dependent properties of nonlinear bistable multilayer structures for constant wave illumination. We find that our system exhibits both steady-state and self-pulsing solutions. In the steady-state regime, we examine the dynamics of driving the system between different transmission states by injecting pulses, and we find optimal pulse parameters. We repeat this work for the case of a linear periodic system with a nonlinear impurity layer.

14.
Phys Rev B Condens Matter ; 54(15): 10249-10252, 1996 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9984795
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...