Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(1): 221-229, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525614

RESUMO

Rapid and reliable characterization of heterogeneous nanoparticle suspensions is a key technology across the nanosciences. Although approaches exist for homogeneous samples, they are often unsuitable for polydisperse suspensions, as particles of different sizes and compositions can lead to indistinguishable signals at the detector. Here, we introduce holographic nanoparticle tracking analysis, holoNTA, as a straightforward methodology that decouples size and material refractive index contributions. HoloNTA is applicable to any heterogeneous nanoparticle sample and has the sensitivity to measure the intrinsic heterogeneity of the sample. Specifically, we combined high dynamic range k-space imaging with holographic 3D single-particle tracking. This strategy enables long-term tracking by extending the imaging volume and delivers precise and accurate estimates of both scattering amplitude and diffusion coefficient of individual nanoparticles, from which particle refractive index and hydrodynamic size are determined. We specifically demonstrate, by simulations and experiments, that irrespective of localization uncertainty and size, the sizing sensitivity is improved as our extended detection volume yields considerably longer particle trajectories than previously reported by comparable technologies. As validation, we measured both homogeneous and heterogeneous suspensions of nanoparticles in the 40-250 nm size range and further monitored protein corona formation, where we identified subtle differences between the nanoparticle-protein complexes derived from avidin, bovine serum albumin, and streptavidin. We foresee that our approach will find many applications of both fundamental and applied nature where routine quantification and sizing of nanoparticles are required.


Assuntos
Nanopartículas , Refratometria , Suspensões , Tamanho da Partícula , Nanopartículas/análise , Soroalbumina Bovina
2.
ACS Appl Mater Interfaces ; 14(51): 57165-57170, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516398

RESUMO

Here, we present and implement a new approach for producing modular inkjet-printable surface-enhanced Raman scattering (SERS) chemosensors. These sensors, combined with a rapid large field-of-view imaging system allow for fast imaging of the chemical characteristics of a sample. The performance of these materials is illustrated by printing a pH sensor on paper and interrogating aqueous solutions at different pH values. Results show single-shot images exceeding 9 mm2 which are readily read out via SERS imaging.

3.
Angew Chem Int Ed Engl ; 61(20): e202200072, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35107845

RESUMO

Surface-enhanced Raman scattering (SERS) imaging is a powerful technology with unprecedent potential for ultrasensitive chemical analysis. Point-by-point scanning and often excessively long spectral acquisition-times hamper the broad exploitation of the full analytical potential of SERS. Here, we introduce large-scale SERS particle screening (LSSPS), a multiplexed widefield screening approach to particle characterization, which is 500-1000 times faster than typical confocal Raman implementations. Beyond its higher throughput, LSSPS simultaneously quantifies both the sample's Raman and Rayleigh scattering to directly quantify the fraction of SERS-active particles which allows for an unprecedented correlation of SERS activity with particle size. .


Assuntos
Ouro , Nanopartículas , Ouro/química , Nanopartículas/química , Tamanho da Partícula , Análise Espectral Raman/métodos , Propriedades de Superfície
4.
Nanoscale ; 14(8): 3062-3068, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34993531

RESUMO

Identifying, visualising and ultimately tracking dynamically moving non-fluorescent nanoparticles in the presence of non-specific scattering is a long-standing challenge across the nano- and life-sciences. In this work we demonstrate that our recently developed ultrafast holographic transient (UHT) microscope is ideally suited for meeting this challenge. We show that UHT microscopy allows reliably distinguishing off-resonant, dielectric, from resonant, metallic, nanoparticles, based on the phototransient signal: a pre-requisite for single-particle tracking in scattering environments. We then demonstrate the capability of UHT microscopy to holographically localize in 3D single particles over large volumes of view. Ultimately, we combine the two concepts to simultaneously track several tens of freely diffusing gold nanoparticles, within a 110 × 110 × 110 µm volume of view at an integration time of 10 ms per frame, while simultaneously recording their phototransient signals. The combined experimental concepts outlined and validated in this work lay the foundation for background-free 3D single-particle tracking applications or spectroscopy in scattering environments and are immediately applicable to systems as diverse as live cells and tissues or supported heterogeneous catalysts.

5.
Nat Nanotechnol ; 16(11): 1195-1200, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34426681

RESUMO

Conducting materials typically exhibit either diffusive or ballistic charge transport. When electron-electron interactions dominate, a hydrodynamic regime with viscous charge flow emerges1-13. More stringent conditions eventually yield a quantum-critical Dirac-fluid regime, where electronic heat can flow more efficiently than charge14-22. However, observing and controlling the flow of electronic heat in the hydrodynamic regime at room temperature has so far remained elusive. Here we observe heat transport in graphene in the diffusive and hydrodynamic regimes, and report a controllable transition to the Dirac-fluid regime at room temperature, using carrier temperature and carrier density as control knobs. We introduce the technique of spatiotemporal thermoelectric microscopy with femtosecond temporal and nanometre spatial resolution, which allows for tracking electronic heat spreading. In the diffusive regime, we find a thermal diffusivity of roughly 2,000 cm2 s-1, consistent with charge transport. Moreover, within the hydrodynamic time window before momentum relaxation, we observe heat spreading corresponding to a giant diffusivity up to 70,000 cm2 s-1, indicative of a Dirac fluid. Our results offer the possibility of further exploration of these interesting physical phenomena and their potential applications in nanoscale thermal management.

6.
Nano Lett ; 21(9): 4021-4028, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33899486

RESUMO

Nanoscale phase control is one of the most powerful approaches to specifically tailor electrical fields in modern nanophotonics. Especially the precise subwavelength assembly of many individual nanobuilding blocks has given rise to exciting new materials as diverse as metamaterials, for miniaturizing optics, or 3D assembled plasmonic structures for biosensing applications. Despite its fundamental importance, the phase response of individual nanostructures is experimentally extremely challenging to visualize. Here, we address this shortcoming and measure the quantitative scattering phase of different nanomaterials such as gold nanorods and spheres as well as dielectric nanoparticles. Beyond reporting spectrally resolved responses, with phase changes close to π when passing the particles' plasmon resonance, we devise a simple method for distinguishing different plasmonic and dielectric particles purely based on their phase behavior. Finally, we integrate this novel approach in a single-shot two-color scheme, capable of directly identifying different types of nanoparticles on one sample, from a single widefield image.

7.
Nano Lett ; 21(4): 1666-1671, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33539103

RESUMO

Nanotechnology is increasingly being applied in many emerging technologies, ranging from metamaterials to next-generation nanodrugs. A key ingredient for its success is the ability to specifically tailor ultrafast nanoscale light-matter interactions over very large areas. Unfortunately, dynamic imaging by ultrafast nanoscopy so far remains limited to very small 2D areas. This shortcoming prevents connecting single-particle observations with large-scale functionality. Here, we address this experimental challenge by combining concepts of ultrafast spectroscopy, wide-field nanoscopy, and digital holography. We introduce an ultrafast holographic transient microscope for wide-field transient nanoscale imaging with high frequency all-optical signal demodulation. We simultaneously record ultrafast transient dynamics of many individual nano-objects and demonstrate time-resolved spectroscopy of gold nanoparticles over a large volume irrespective of their x-y-z position. Our results pave the way to single-shot 3D microscopy of 2D and 3D materials on arbitrary time scales from femtosecond carrier dynamics in optoelectronic materials to millisecond dynamics in complex tissues.


Assuntos
Holografia , Nanopartículas Metálicas , Ouro , Microscopia , Nanotecnologia
8.
Nano Lett ; 21(1): 317-322, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33346670

RESUMO

Optical sensing is one of the key enablers of modern diagnostics. Especially label-free imaging modalities hold great promise as they eliminate labeling procedures prior to analysis. However, scattering signals of nanometric particles scale with their volume square. This unfavorable scaling makes it extremely difficult to quantitatively characterize intrinsically heterogeneous clinical samples, such as extracellular vesicles, as their signal variation easily exceeds the dynamic range of currently available cameras. Here, we introduce off-axis k-space holography that circumvents this limitation. By imaging the back-focal plane of our microscope, we project the scattering signal of all particles onto all camera pixels, thus dramatically boosting the achievable dynamic range to up to 110 dB. We validate our platform by detecting and quantitatively sizing metallic and dielectric particles over a 200 × 200 µm field of view and demonstrate that independently performed signal calibrations allow correctly sizing particles made from different materials. Finally, we present quantitative size distributions of extracellular vesicle samples.


Assuntos
Holografia , Microscopia
9.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148645

RESUMO

Fluorescence microscopy is the method of choice in biology for its molecular specificity and super-resolution capabilities. However, it is limited to a narrow z range around one observation plane. Here, we report an imaging approach that recovers the full electric field of fluorescent light with single-molecule sensitivity. We expand the principle of digital holography to fast fluorescent detection by eliminating the need for phase cycling and enable three-dimensional (3D) tracking of individual nanoparticles with an in-plane resolution of 15 nm and a z-range of 8 mm. As a proof-of-concept biological application, we image the 3D motion of extracellular vesicles (EVs) inside live cells. At short time scales (<4 s), we resolve near-isotropic 3D diffusion and directional transport. For longer lag times, we observe a transition toward anisotropic motion with the EVs being transported over long distances in the axial plane while being confined in the horizontal dimension.

10.
Nat Nanotechnol ; 15(12): 1005-1011, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989239

RESUMO

Nanometric probes based on surface-enhanced Raman scattering (SERS) are promising candidates for all-optical environmental, biological and technological sensing applications with intrinsic quantitative molecular specificity. However, the effectiveness of SERS probes depends on a delicate trade-off between particle size, stability and brightness that has so far hindered their wide application in SERS imaging methodologies. In this Article, we introduce holographic Raman microscopy, which allows single-shot three-dimensional single-particle localization. We validate our approach by simultaneously performing Fourier transform Raman spectroscopy of individual SERS nanoparticles and Raman holography, using shearing interferometry to extract both the phase and the amplitude of wide-field Raman images and ultimately localize and track single SERS nanoparticles inside living cells in three dimensions. Our results represent a step towards multiplexed single-shot three-dimensional concentration mapping in many different scenarios, including live cell and tissue interrogation and complex anti-counterfeiting applications.


Assuntos
Holografia/instrumentação , Nanopartículas/análise , Análise Espectral Raman/instrumentação , Rastreamento de Células/instrumentação , Rastreamento de Células/métodos , Desenho de Equipamento , Análise de Fourier , Células HeLa , Holografia/métodos , Humanos , Interferometria/instrumentação , Interferometria/métodos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Análise Espectral Raman/métodos
11.
Nano Lett ; 20(6): 4537-4542, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401523

RESUMO

Plasmonic nanostructures dramatically alter the radiative and nonradiative properties of single molecules in their vicinity. This coupling-induced change in decay channels selectively enhances specific vibronic transitions, which can enable plasmonic control of molecular reactivity. Here, we report coupling-dependent spectral emission shaping of single Rhodamine 800 molecules in the vicinity of plasmonic gold nanorods. We show that the relative vibronic transition rates of the first two vibronic transitions of the spontaneous emission spectrum can be tuned in the weak coupling regime, by approximately 25-fold, on the single molecule level.

12.
Nano Lett ; 20(3): 1992-1999, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053384

RESUMO

Defect centers in two-dimensional hexagonal boron nitride (hBN) are drawing attention as single-photon emitters with high photostability at room temperature. With their ultrahigh photon-stability, hBN single-photon emitters are promising for new applications in quantum technologies and for 2D-material based optoelectronics. Here, we control the emission rate of hBN-defects by coupling to resonant plasmonic nanocavities. By deterministic control of the antenna, we acquire high-resolution emission maps of the single hBN-defects. Using time-gating, we can discriminate the hBN-defect emission from the antenna luminescence. We observe sharp dips (40 nm fwhm) in emission, together with a reduction in luminescence lifetime. Comparing with finite-difference time-domain simulations, we conclude that both radiative and nonradiative rates are enhanced, effectively reducing the quantum efficiency. Also, the large refractive index of hBN largely screens off the local antenna field enhancement. Finally, based on the insight gained we propose a close-contact design for an order of magnitude brighter hBN single-photon emission.

13.
Nanoscale ; 12(6): 3723-3730, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31993603

RESUMO

Traditionally, the nanoscale interaction between single photon emitters and plasmonic nanostructures is studied by relying on deterministic, near-perfect, nanoscale-control, either top-down or bottom-up. However, these approaches are ultra-low throughput thus rendering systematic studies difficult and time-consuming. Here, we show a highly parallelised far-field tactic, combining multiplexed super-resolution fluorescence localization microscopy and data-driven statistical analysis, to study near-field interactions between gold nanorods and single molecules, even at bulk concentrations. We demonstrate that ensemble-level single molecule detection allows separating individual emitters according to their coupling strength with tailored resonant structures, which ultimately permits the reconstruction of super-resolved 2D interaction maps around individual nanoantennas.

14.
Nano Lett ; 17(2): 1277-1281, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28088861

RESUMO

Label-free detection, analysis, and rapid tracking of nanoparticles is crucial for future ultrasensitive sensing applications, ranging from understanding of biological interactions to the study of size-dependent classical-quantum transitions. Yet optical techniques to distinguish nanoparticles directly among their background remain challenging. Here we present amplified interferometric scattering microscopy (a-iSCAT) as a new all-optical method capable of detecting individual nanoparticles as small as 15 kDa proteins that is equivalent to half a GFP. By balancing scattering and reflection amplitudes the interference contrast of the nanoparticle signal is amplified 1 to 2 orders of magnitude. Beyond high sensitivity, a-iSCAT allows high-speed image acquisition exceeding several hundreds of frames-per-second. We showcase the performance of our approach by detecting single Streptavidin binding events and by tracking single Ferritin proteins at 400 frames-per-second with 12 nm localization precision over seconds. Moreover, due to its extremely simple experimental realization, this advancement finally enables a cheap and routine implementation of label-free all-optical single nanoparticle detection platforms with sensitivity operating at the single protein level.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Ligação ao Ferro/análise , Microscopia de Interferência/métodos , Nanopartículas/química , Receptores de Superfície Celular/análise , Estreptavidina/análise , Difusão , Fluorescência , Ouro/química , Humanos , Modelos Teóricos , Peso Molecular , Nanoestruturas/química , Nanotecnologia , Ligação Proteica , Titânio/química
15.
J Am Chem Soc ; 137(39): 12434-7, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26376448

RESUMO

A hallmark of the primary visual event is the barrierless, ultrafast, and efficient 11-cis to all-trans photoisomerization of the retinal protonated Schiff base (RPSB) chromophore. The remarkable reactivity of RPSB in the visual pigment rhodopsin has been attributed to potential energy surface modifications enabled by evolution-optimized chromophore-protein interactions. Here, we use a combined synthetic and ultrafast spectroscopic approach to show that barrierless photoisomerization is an intrinsic property of 11-cis RPSB, suggesting that the protein may merely adjust the ratio between fast reactive and slow unreactive decay channels. These results call for a re-evaluation of our understanding and theoretical description of RPSB photochemistry.


Assuntos
Fotoquímica , Retinaldeído/química , Retinaldeído/metabolismo , Bases de Schiff/química , Isomerismo , Estrutura Molecular , Soluções
16.
J Am Chem Soc ; 137(8): 2886-91, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25647020

RESUMO

Conical intersections play a crucial role in photochemical processes, but limited experimental information exists on the structural distortions that couple electronic with reactive nuclear motion. Using ultra-broadband and highly time-resolved optical spectroscopy, we follow the evolution of vibrational wavepackets after passage through a conical intersection during the primary visual event, the 11-cis to all-trans photoisomerization of the retinal chromophore in rhodopsin. Comparison of nuclear coherences generated under resonant and off-resonant impulsive excitation conclusively reveals coherent wavepacket motion in the bathorhodopsin photoproduct over the full vibrational manifold. We observe strongly enhanced coherences in low-frequency torsional degrees of freedom over the fingerprint region and almost complete suppression of some hydrogen wagging motion. Our ability to monitor the multidimensional evolution of nuclear wavepackets across multiple electronic states is a general means for studying the structural and dynamic origins of efficient photochemistry and provides critical experimental information for theoretical studies.

17.
J Phys Chem A ; 118(43): 9976-84, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25244029

RESUMO

We have developed the technique of population-controlled impulsive vibrational spectroscopy (PC-IVS) aimed at providing high-quality, background-free Raman spectra of excited electronic states and their dynamics. Our approach consists of a modified transient absorption experiment using an ultrashort (<10 fs) pump pulse with additional electronic excitation and control pulses. The latter allows for the experimental isolation of excited-state vibrational coherence and, hence, vibrational spectra. We illustrate the capabilities of PC-IVS by reporting the Raman spectra of well-established molecular systems such as the carotenoid astaxanthin and trans-stilbene and present the first excited-state Raman spectra of the retinal protonated Schiff base chromophore in solution. Our approach, illustrated here with impulsive vibrational spectroscopy, is equally applicable to transient and even multidimensional infrared and electronic spectroscopies to experimentally isolate spectroscopic signatures of interest.

18.
Opt Lett ; 39(14): 4112-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121664

RESUMO

We describe two noncollinear optical parametric amplifier (NOPA) systems pumped by either the second (515 nm) or the third (343 nm) harmonic from an Yb:KGW source. Pulse durations as short as 6.8 fs are readily obtained by compression with chirped mirrors. The availability of both the second and third harmonics for NOPA pumping allows for gap-free tuning from 520 to 980 nm. The use of an intermediate NOPA to generate seed light at 780 nm extends the tuning range of the third harmonic pumped NOPA toward 450 nm.

19.
J Am Chem Soc ; 136(6): 2650-8, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24479840

RESUMO

Understanding how molecular structure and environment control energy flow in molecules is a requirement for the efficient design of tailor-made photochemistry. Here, we investigate the tunability of the photochemical and photophysical properties of the retinal-protonated Schiff base chromophore in solution. Replacing the n-butylamine Schiff base normally chosen to mimic the saturated linkage found in nature by aromatic amines results in the reproduction of the opsin shift and complete suppression of all isomerization channels. Modification of retinal by directed addition or removal of backbone substituents tunes the overall photoisomerization yield from 0 to 0.55 and the excited state lifetime from 0.4 to 7 ps and activates previously inaccessible reaction channels to form 7-cis and 13-cis products. We observed a clear correlation between the presence of polarizable backbone substituents and photochemical reactivity. Structural changes that increase reaction speed were found to decrease quantum yields, and vice versa, so that excited state lifetime and efficiency are inversely correlated in contrast to the trends observed when comparing retinal photochemistry in protein and solution environments. Our results suggest a simple model where backbone modifications and Schiff base substituents control barrier heights on the excited-state potential energy surface and therefore determine speed, product distribution, and overall yield of the photochemical process.


Assuntos
Fotoquímica , Prótons , Retinaldeído/química , Bases de Schiff/química , Modelos Moleculares , Estrutura Molecular , Soluções
20.
J Phys Chem Lett ; 4(8): 1358-64, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282153

RESUMO

We demonstrate that transient absorption spectroscopy performed with an ultrashort pump pulse and a chirped, broad-band probe pulse is capable of recording full vibrational spectra of excited electronic states in the time domain. The resulting spectra do not suffer from the nontrivial baselines and line shapes often encountered in frequency domain techniques and enable optimal and automated subtraction of background signatures. Probing the molecular dynamics continuously over a broad energy bandwidth makes it possible to confidently assign the vibrational coherences to specific electronic states and suggests the existence of mode-specific absorption spectra reminiscent of resonance Raman intensity analysis. The first observation of the nominally forbidden one-photon ground to first excited electronic state transition in ß-carotene demonstrates the high sensitivity of our approach. Our results provide a first glimpse of the immense potential of broad-band impulsive vibrational spectroscopy (BB-IVS) to study ultrafast chemical reaction dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...