Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(4): 1218-1230, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36735906

RESUMO

In this work ground and excited electronic states of Heisenberg cluster models, in the form of configuration interaction many-body wave functions, are characterized within the spin-adapted Graphical Unitary Group Approach framework, and relying on a novel combined unitary and symmetric group approach. Finite-size cluster models of well-defined point-group symmetry and of general local-spin Slocal>12 are presented, including J1-J2 triangular and tetrahedral clusters, which are often used to describe magnetic interactions in biological and biomimetic polynuclear transition metal clusters with unique catalytic activity, such as nitrogen fixation and photosynthesis. We show that a unique block-diagonal structure of the underlying Hamiltonian matrix in the spin-adapted basis emerges when an optimal lattice site ordering is chosen that reflects the internal symmetries of the model investigated. The block-diagonal structure is bound to the commutation relations between cumulative spin operators and the Hamiltonian operator, that in turn depend on the geometry of the cluster investigated. The many-body basis transformation, in the form of the orbital/site reordering, exposes such commutation relations. These commutation relations represent a rigorous and formal demonstration of the block-diagonal structure in Hamiltonian matrices and the compression of the corresponding spin-adapted many-body wave functions. As a direct consequence of the block-diagonal structure of the Hamiltonian matrix, it is possible to selectively optimize electronic excited states without the overhead of calculating the lower-energy states by simply relying on the initial ansatz for the targeted wave function. Additionally, more compact many-body wave functions are obtained. In extreme cases, electronic states are precisely described by a single configuration state function, despite the curse of dimensionality of the corresponding Hilbert space. These findings are crucial in the electronic structure theory framework, for they offer a conceptual route toward wave functions of reduced multireference character, that can be optimized more easily by approximated eigensolvers and are of more facile physical interpretation. They open the way to study larger ab initio and model Hamiltonians of increasingly larger number of correlated electrons, while keeping the computational costs at their lowest. In particular, these elements will expand the potential of electronic structure methods in understanding magnetic interactions in exchange-coupled polynuclear transition metal clusters.

2.
J Chem Phys ; 157(12): 124111, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182439

RESUMO

We investigate the exact full configuration interaction quantum Monte Carlo algorithm (without the initiator approximation) applied to weak sign-problem fermionic systems, namely, systems in which the energy gap to the corresponding sign-free or "stoquastized" state is small. We show that the minimum number of walkers required to exactly overcome the sign problem can be significantly reduced via an importance-sampling similarity transformation even though the similarity-transformed Hamiltonian has the same stoquastic gap as the untransformed one. Furthermore, we show that in the off-half-filling Hubbard model at U/t = 8, the real-space (site) representation has a much weaker sign problem compared to the momentum space representation. By applying importance sampling using a Gutzwiller-like guiding wavefunction, we are able to substantially reduce the minimum number of walkers in the case of 2 × â„“ Hubbard ladders, enabling us to get exact energies for sizable ladders. With these results, we calculate the fundamental charge gap ΔEfund = E(N + 1) + E(N - 1) - 2E(N) for the ladder systems compared to strictly one-dimensional Hubbard chains and show that the ladder systems have a reduced fundamental gap compared to the 1D chains.

3.
J Phys Chem A ; 126(12): 2050-2060, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298155

RESUMO

In this article, we demonstrate that a first-order spin penalty scheme can be efficiently applied to the Slater determinant based Full-CI Quantum Monte Carlo (FCIQMC) algorithm, as a practical route toward spin purification. Two crucial applications are presented to demonstrate the validity and robustness of this scheme: the 1Δg ← 3Σg vertical excitation in O2 and key spin gaps in a [Mn3(IV)O4] cluster. In the absence of a robust spin adaptation/purification technique, both applications would be unattainable by Slater determinant based ground state methods, with any starting wave function collapsing into the higher-spin ground state during the optimization. This strategy can be coupled to other algorithms that use the Slater determinant based FCIQMC algorithm as configuration interaction eigensolver, including the Stochastic Generalized Active Space, the similarity-transformed FCIQMC, the tailored-CC, and second-order perturbation theory approaches. Moreover, in contrast to the GUGA-FCIQMC technique, this strategy features both spin projection and total spin adaptation, making it appealing when solving anisotropic Hamiltonians. It also provides spin-resolved reduced density matrices, important for the investigation of spin-dependent properties in polynuclear transition metal clusters, such as the hyperfine-coupling constants.

4.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716189

RESUMO

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...