Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(8): 1852-1863, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34139845

RESUMO

New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide a-phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body. The probe targets abnormal choline metabolism in cancer cells; specifically, the overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) in breast, prostate, and ovarian cancers. Pyro-PtdEtn-QSY consists of a NIR fluorophore and a quencher, attached to a PtdEtn moiety. It is selectively activated by PC-PLC resulting in enhanced fluorescence in cancer cells compared to normal cells. In our in vitro investigation, four breast cancer cell lines showed higher probe activation levels than noncancerous control cells, immortalized human mammary gland cells, and normal human T cells. Moreover, the ability of this nanocomposite to function as a sensitizer in PDT experiments on MDA-MB-231 cells suggests that the probe is promising as a theranostic agent.


Assuntos
Fosfolipídeos/farmacologia , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Lipídeos/química , Lipídeos/farmacologia , Estrutura Molecular , Nanopartículas/química , Fosfolipídeos/química , Espectrofotometria Infravermelho
2.
ACS Omega ; 3(6): 6867-6873, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29978148

RESUMO

The near-infrared fluorescent activatable smart probe Pyro-phosphatidylethanolamine (PtdEtn)-QSY was synthesized and observed to selectively fluoresce in the presence of phosphatidylcholine-specific phospholipase C (PC-PLC). PC-PLC is an important biological target as it is known to be upregulated in a variety of cancers, including triple negative breast cancer. Pyro-PtdEtn-QSY features a QSY21 quenching moiety instead of the Black Hole Quencher-3 (BHQ-3) used previously because the latter contains an azo bond, which could lead to biological instability.

3.
J Phys Chem A ; 122(2): 516-528, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29261311

RESUMO

Laser-ablated U atoms react with (CN)2 in excess argon and neon during codeposition at 4 K to form UNC, U(NC)2, and U(NC)4 as the major uranium-bearing products, which are identified from their matrix infrared spectra using cyanogen substituted with 13C and 15N and from quantum chemical calculations. The 12/13CN and C14/15N isotopic frequency ratios computed for the U(NC)1,2,4 molecules agree better with the observed values than those calculated for the U(CN)1,2,4 isomers. Multiplets using mixed isotopic cyanogens reveal the stoichiometries of these products, and the band positions and quantum chemical calculations confirm the isocyanide bonding arrangements, which are 14 and 51 kJ/mol more stable than the cyanide isomers for UNC and U(NC)2, respectively, and 62 kJ/mol for U(NC)4 in the isolated gas phase at the CCSD(T)/CBS level. The studies further demonstrate that the isocyano nitrogen is a better π donor, so it interacts with U(VI) better than carbon. Although the higher isocyanides are more stable than the corresponding cyanides, U(NC)5 and U(NC)6 were not observed here most likely because unfavorable or endothermic routes are required for their production from U(NC)4. The computed U-NC bond dissociation energies decrease from 581 kJ/mol for 4[UNC] to 168 kJ/mol for 1[U(NC)6 ]. The ionic nature of U(NC)n decreases as the number of isocyano groups increases.

4.
Chem Rev ; 117(22): 13721-13755, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29064228

RESUMO

This review covers publications ranging from 2005 to 2017 concerning the organic reactions of aromatic ligands η2-coordinated to tungsten or molybdenum and the use of these reactions in the synthesis of novel organic substances. An emphasis is placed on C-C bond-forming reactions using conventional building blocks of organic synthesis such as acetals, enolates, Michael acceptors, acylating reagents, and activated aromatics. Substrates activated by the metal include arenes, pyridines, pyrroles, pyrimidines, furans, and thiophenes. General reactivity patterns are elucidated, as well as stereochemical preferences. These trends are compared to those of osmium and rhenium forebears as well as to the reactivity patterns of other methods of stoichiometric transition-metal-based dearomatization (i.e., η6-arene complexes).

5.
Front Microbiol ; 8: 740, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496437

RESUMO

The antimicrobial activity of the chemokine CXCL10 against vegetative cells of Bacillus anthracis occurs via both bacterial FtsE/X-dependent and-independent pathways. Previous studies established that the FtsE/X-dependent pathway was mediated through interaction of the N-terminal region(s) of CXCL10 with a functional FtsE/X complex, while the FtsE/X-independent pathway was mediated through the C-terminal α-helix of CXCL10. Both pathways result in cell lysis and death of B. anthracis. In other bacterial species, it has been shown that FtsE/X is involved in cellular elongation though activation of complex-associated peptidoglycan hydrolases. Thus, we hypothesized that the CXCL10-mediated killing of vegetative cells of B. anthracis through the FtsE/X-dependent pathway resulted from the disruption of peptidoglycan processing. Immunofluorescence microscopy studies using fluorescent peptidoglycan probes revealed that incubation of B. anthracis Sterne (parent) strain with CXCL10 or a C-terminal truncated CXCL10 (CTTC) affected peptidoglycan processing and/or incorporation of precursors into the cell wall. B. anthracis ΔftsX or ftsE(K123A/D481N) mutant strains, which lacked a functional FtsE/X complex, exhibited little to no evidence of disruption in peptidoglycan processing by either CXCL10 or CTTC. Additional studies demonstrated that the B. anthracis parent strain exhibited a statistically significant increase in peptidoglycan release in the presence of either CXCL10 or CTTC. While B. anthracis ΔftsX strain showed increased peptidoglycan release in the presence of CXCL10, no increase was observed with CTTC, suggesting that the FtsE/X-independent pathway was responsible for the activity observed with CXCL10. These results indicate that FtsE/X-dependent killing of vegetative cells of B. anthracis results from a loss of cell wall integrity due to disruption of peptidoglycan processing and suggest that FtsE/X may be an important antimicrobial target to study in the search for alternative microbial therapeutics.

6.
Inorg Chem ; 56(9): 5060-5068, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28421751

RESUMO

Homoleptic thorium isocyanide complexes have been prepared via the reactions of laser-ablated thorium atoms and (CN)2 in a cryogenic matrix, and the structures of the products were characterized by infrared spectroscopy and theoretical calculations. Thorium atoms reacted with (CN)2 under UV irradiation to form the oxidative addition product Th(NC)2, which was calculated to have closed-shell singlet ground state with a bent geometry. Further reaction of Th(NC)2 and (CN)2 resulted in the formation of Th(NC)4, a molecule with a tetrahedral geometry. Minor products such as ThNC and Th(NC)3 were produced upon association reactions of CN with Th and Th(NC)2. Homoleptic thorium cyanide isomers Th(CN)x (x = 1-4) are predicted to be less stable than the corresponding isocyanides. The C-N stretches of thorium cyanides were calculated to be between 2170 and 2230 cm-1 at the B3LYP level, more than 120 cm-1 higher than the N-C stretches of isocyanides and with much weaker intensities. No experimental absorptions appeared where Th(CN)x should be observed.

7.
Chem Commun (Camb) ; 51(18): 3899-902, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25656733

RESUMO

Reactions of laser-ablated U atoms with (CN)2 produce UNC, U(NC)2, and U(NC)4 as the major products, identified from their Ar matrix infrared spectra and precursors partially and fully substituted with (13)C and (15)N. Mixed isotopic multiplets substantiate product stoichiometries. Band positions and quantum chemical calculations verify the isocyanide bonding.

8.
Inorg Chem ; 50(11): 4677-9, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21524083

RESUMO

The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-ß-PDP)Mo(NO)(CO)]PF(6) ([cis-ß-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...