Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 764: 142819, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33129542

RESUMO

We measured polychlorinated biphenyls (PCBs) in multiple age and size classes of Pacific sand lance (Ammodytes personatus), including eggs, young-of-the year, and adults to evaluate maternal transfer as a pathway for contaminant uptake and to add to the limited information on the occurrence of PCBs in sand lance in Puget Sound. Sampling was replicated at an urban embayment (Eagle Harbor) and a state park along an open shoreline (Clayton Beach), during spring and fall. Lipid-normalized concentrations of PCBs in sand lance at Eagle Harbor were 5-11 times higher than PCB concentrations in comparable samples at Clayton Beach. This was true for every life stage and size class of sand lance, including eggs removed from females. The same trend was observed in environmental samples. In Eagle Harbor, PCB concentrations in unfiltered water (0.19 ng/L), sieved (<63 µm) nearshore bed sediments (0.78 ng/g dw) and suspended particulate matter (1.69 ng/g dw) were 2-3 times higher than equivalent samples from near Clayton Beach. Sand lance collected in the fall (buried in sediment during presumed winter dormancy) had lower lipid content and up to four times higher PCB concentrations than comparably sized fish collected in the spring (by beach seine). Lipid content was 5-8% in spring fish and was reduced in fall fish (1-3%). Male sand lance had higher PCB concentrations than comparable females. All egg samples contained PCBs, and the lipid normalized egg/female concentration ratios were close to 1 (0.87-0.96), confirming that maternal transfer of PCBs occurred, resulting in sand lance eggs and early life stages being contaminated with PCBs even before they are exposed to exogenous sources. These life stages are prey for an even wider range of species than consume adult sand lance, creating additional exposure pathways for biota and increasing the challenges for mitigation of PCBs in the food web.


Assuntos
Perciformes , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Feminino , Cadeia Alimentar , Masculino , Bifenilos Policlorados/análise , Washington , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 265(Pt A): 115083, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806431

RESUMO

Marine and freshwater plastic pollution is a challenging issue receiving large amounts of research and media attention. Yet, few studies have documented the impact of microplastic ingestion to aquatic organisms. In the Pacific Northwest, Chinook salmon are a culturally and commercially significant fish species. The presence of marine and freshwater microplastic pollution is well documented in Chinook salmon habitat, yet no research has investigated the impacts to salmon from microplastic ingestion. The majority of the marine microplastics found in the Salish Sea are microfibers, synthetic extruded polymers that come from commonly worn clothing. To understand the potential impacts of microfiber ingestion to fish, we ran a feeding experiment with juvenile Chinook salmon to determine if ingested fibers are retained or digestion rates altered over a 10 day digestion period. The experiment was completed in two trials, each consisted of 20 control and 20 treatment fish. Treatment fish were each fed an amended ration of 12 food pellets spiked with 20 polyester microfibers and control fish were fed the same ration without added microfibers. Fish were sampled at day 0, 3, 5, 7, and 10 to assess if fibers were retained in their gastrointestinal tract and to determine the rate of digestion. Fibers for the experiment came from washing a red polyester fleece jacket in a microfiber retention bag. Fibers had a mean length of 4.98 mm. Results showed fish were able to clear up to 94% of fed fibers over 10 days. Differences in mean gastrointestinal mass were not statistically significant at any sampled time between treatment and controls, suggesting that the ingestion of microfibers did not alter digestion rates. Further work is needed to understand if repeated exposures, expected in the environment, alter digestion or food assimilation for growth.


Assuntos
Microbioma Gastrointestinal , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Microplásticos , Veículos Automotores , Noroeste dos Estados Unidos , Plásticos/análise , Poliésteres , Salmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA