Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 110: 289-302, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348917

RESUMO

In this work, the macrotexture of dense Zn produced by laser powder bed fusion (LPBF) was studied and the mechanical properties for different tensile bar orientations were measured. The compressive strength of LPBF Zn scaffolds with five different unit cells was measured for a relative density of 20-51%. In addition, the response of mesenchymal stem cells to the LPBF Zn scaffolds was studied. The elastic modulus and yield strength of dense LPBF Zn were 110.0 ± 0.2 GPa and 78.0 ± 0.4 MPa, respectively in the vertical and 81.0 ± 0.4 GPa and 55.0 ± 0.7 MPa in the horizontal direction. This could be explained by the preferential orientation of the 〈0001〉 direction in the building plane. For LPBF Zn scaffolds, the plateau stress for the different unit cells varied between 8 and 33 MPa for a 30% relative density. Calcein staining, lactate production and DNA measurements over a 13-day period showed that mesenchymal stem cell viability was low for Zn scaffolds. This work forms a basis for further research into the LPBF texture formation of metals with hexagonal crystal structure, guides implant designers in scaffold unit cell and relative density selection and motivates further research into the cytocompatibility of LPBF Zn. STATEMENT OF SIGNIFICANCE: Laser powder bed fusion (LPBF) is a manufacturing technology which allows the seamless combination of porous and non-porous volumes in a metallic implant and is used in the orthopedic manufacturing industry today. The production of highly dense Zn with LPBF has been described earlier, but the mechanical properties of the resulting material have not been studied in detail yet. This study is the first to report on (i) the influence of different scanning strategies on the macrotexture of dense LPBF Zn and the resulting anisotropy of its mechanical properties, (ii) the relationship between the relative density and strength for LPBF Zn scaffolds with five different unit cells and (iii) the in vitro response of mesenchymal stem cells to these scaffolds.


Assuntos
Implantes Absorvíveis , Alicerces Teciduais , Lasers , Porosidade , Pós , Zinco
2.
Materials (Basel) ; 13(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344664

RESUMO

Additively manufactured (AM) porous metallic biomaterials, in general, and AM porous titanium, in particular, have recently emerged as promising candidates for bone substitution. The porous design of such materials allows for mimicking the elastic mechanical properties of native bone tissue and showed to be effective in improving bone regeneration. It is, however, not clear what role the other mechanical properties of the bulk material such as ductility play in the performance of such biomaterials. In this study, we compared the bone tissue regeneration performance of AM porous biomaterials made from the commonly used titanium alloy Ti6Al4V-ELI with that of commercially pure titanium (CP-Ti). CP-Ti was selected because of its high ductility as compared to Ti6Al4V-ELI. Critical-sized (6 mm diameter) femoral defects in rats were treated with implants made from both Ti6Al4V-ELI and CP-Ti. Bone regeneration was assessed up to 11 weeks using micro-CT scanning. The regenerated bone volume was assessed ex vivo followed by histology and biomechanical testing to assess osseointegration of the implants. The bony defects treated with AM CP-Ti implants generally showed higher volumes of regenerated bone as compared to those treated with AM Ti6Al4V-ELI. The torsional strength of the two titanium groups were similar however, and both considerably lower than those measured for intact bony tissue. These findings show the importance of material type and ductility of the bulk material in the ability for bone tissue regeneration of AM porous biomaterials.

3.
Sci Rep ; 8(1): 4957, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563593

RESUMO

Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais/métodos , Estresse Mecânico , Titânio/química , Força Compressiva , Porosidade , Resistência à Tração
4.
J Mech Behav Biomed Mater ; 70: 60-67, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28433243

RESUMO

Additive manufacturing techniques such as Selective Laser Melting (SLM) allow carefully controlled production of complex porous structures such as scaffolds. These advanced structures can offer many interesting advantages over conventionally produced products in terms of biological response and patient specific design. The surface finish of AM parts is often poor because of the layer wise nature of the process and adhering particles. Loosening of these particles after implantation should be avoided, as this could put the patient's health at risk. In this study the use of hydrochloric acid and hydrogen peroxide mixtures for surface treatment of cobalt-chromium F75 scaffolds produced by SLM is investigated. A 27% HCl and 8% H2O2 etchant proved effective in removing adhering particles while retaining the quasi-static and fatigue performance of the scaffolds.


Assuntos
Cromo , Cobalto , Alicerces Teciduais , Humanos , Ácido Clorídrico , Peróxido de Hidrogênio , Lasers , Porosidade , Pós
5.
J Mech Behav Biomed Mater ; 68: 216-223, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28189094

RESUMO

Additive manufacturing techniques such as Selective Laser Melting (SLM) allow carefully controlled production of complex porous structures such as scaffolds. These advanced structures can offer many interesting advantages over conventionally produced products in terms of biological response and patient specific design. The surface finish of AM parts is often poor because of the layer wise nature of the process and adhering particles. Loosening of these particles after implantation should be avoided, as this could put the patient's health at risk. In this study the use of hydrochloric acid and hydrogen peroxide mixtures for surface treatment of cobalt-chromium F75 scaffolds produced by SLM is investigated. A 27% HCl and 8% H2O2 etchant proved effective in removing adhering particles while retaining the quasi-static and fatigue performance of the scaffolds.


Assuntos
Cromo , Cobalto , Próteses e Implantes , Alicerces Teciduais , Materiais Biocompatíveis , Humanos , Ácido Clorídrico , Peróxido de Hidrogênio , Lasers , Teste de Materiais , Porosidade , Pós
6.
Acta Biomater ; 47: 193-202, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717912

RESUMO

This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness. In particular, the influence of stress relieving, hot isostatic pressing and chemical etching was studied. Analytical and numerical techniques were developed to calculate the maximum local tensile stress in the struts as function of the strut diameter and load. With this method, the variability in the relative density between all samples was taken into account. The local stress in the struts was then used to quantify the exact influence of the applied post-SLM treatments on the fatigue life. A significant improvement of the fatigue life was achieved. Also, the post-SLM treatments, procedures and calculation methods can be applied to different types of porous metallic structures and hence this paper provides useful tools for improving fatigue performance of metallic biomaterials. STATEMENT OF SIGNIFICANCE: Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM) are increasingly being used for producing customized porous metallic biomaterials. These biomaterials are regularly used for biomedical implants and hence a long lifetime is required. In this paper, a set of post-built surface and heat treatments is presented that can be used to significantly improve the fatigue life of porous SLM-Ti6Al4V samples. In addition, a novel and efficient analytical local stress method was developed to accurately quantify the influence of the post-built treatments on the fatigue life. Also numerical simulation techniques were used for validation. The developed methods and techniques can be applied to other types of porous biomaterials and hence provide new and useful tools for improving and predicting the fatigue life of porous biomaterials.


Assuntos
Materiais Biocompatíveis/química , Lasers , Teste de Materiais/métodos , Metais/química , Estresse Mecânico , Ligas , Microscopia Eletrônica de Varredura , Porosidade , Titânio/química
7.
J Mech Behav Biomed Mater ; 70: 7-16, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27998687

RESUMO

Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R-ratio behavior of AM porous biomaterials is both quantitatively and qualitatively different from that of bulk materials.


Assuntos
Materiais Biocompatíveis/análise , Estresse Mecânico , Titânio/análise , Ligas , Força Compressiva , Teste de Materiais , Porosidade , Pressão , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA