Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39211191

RESUMO

Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for ß cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived ß (SC-ß) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-ß cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks. Surprisingly, we found that reductions in glucose- stimulated mitochondrial respiration in SC-islets were not associated with alterations in mitochondrial mass, structure, or genome integrity. In contrast, SC-islets show limited expression of targets of PPARIZ and PPARγ, which regulate mitochondrial programming, yet whose functions in ß cell differentiation are unknown. Importantly, treatment with WY14643, a potent PPARIZ agonist, induced expression of mitochondrial targets, improved insulin secretion, and increased the formation and maturation of SC-ß cells both in vitro and following transplantation. Thus, mitochondrial programming promotes the differentiation and maturation of SC-ß cells and may be a promising target to improve ß cell replacement efforts for T1D.

2.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528148

RESUMO

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Macrófagos Alveolares/microbiologia , Tuberculose/microbiologia , Mycobacterium tuberculosis/fisiologia , Macrófagos/microbiologia , Lipídeos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(36): E7405-E7414, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28760964

RESUMO

A series of M(PyED)·X (X = 2Cl-, SO42-) pyridine-metalloenediyne complexes [M = Cu(II), Fe(II), or Zn(II)] and their independently synthesized, cyclized analogs have been prepared to investigate their potential as radical-generating DNA-damaging agents. All complexes possess a 1:1 metal-to-ligand stoichiometry as determined by electronic absorption spectroscopy and X-ray diffraction. Solution structural analysis reveals a pπ Cl [Formula: see text] Cu(II) LMCT (22,026 cm-1) for Cu(PyED)·2Cl, indicating three nitrogens and a chloride in the psuedo-equatorial plane with the remaining pyridine nitrogen and solvent in axial positions. EPR spectra of the Cu(II) complexes exhibit an axially elongated octahedron. This spectroscopic evidence, together with density functional theory computed geometries, suggest six-coordinate structures for Cu(II) and Fe(II) complexes and a five-coordinate environment for Zn(II) analogs. Bergman cyclization via thermal activation of these constructs yields benzannulated product indicative of diradical generation in all complexes within 3 h at 37 °C. A significant metal dependence on the rate of the reaction is observed [Cu(II) > Fe(II) > Zn(II)], which is mirrored in in vitro DNA-damaging outcomes. Whereas in situ chelation of PyED leads to considerable degradation in the presence of all metals within 1 h under hyperthermia conditions, Cu(II) activation produces >50% compromised DNA within 5 min. Additionally, Cu(II) chelated PyED outcompetes DNA polymerase I to successfully inhibit template strand extension. Exposure of HeLa cells to Cu(PyBD)·SO4 (IC50 = 10 µM) results in a G2/M arrest compared with untreated samples, indicating significant DNA damage. These results demonstrate metal-controlled radical generation for degradation of biopolymers under physiologically relevant temperatures on short timescales.


Assuntos
Replicação do DNA/efeitos dos fármacos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Quelantes , Cristalografia por Raios X , Ciclização , Dano ao DNA , Desenho de Fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/farmacologia , Células HeLa , Humanos , Ligantes , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA