Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443528

RESUMO

The Ca2+-permeable Transient Receptor Potential channel vanilloid subfamily member 4 (TRPV4) is involved in a broad range of physiological processes, including the regulation of systemic osmotic pressure, bone resorption, vascular tone, and bladder function. Mutations in the TRPV4 gene are the cause of a spectrum of inherited diseases (or TRPV4-pathies), which include skeletal dysplasias, arthropathies, and neuropathies. There is little understanding of the pathophysiological mechanisms underlying these variable disease phenotypes, but it has been hypothesized that disease-causing mutations affect interaction with regulatory proteins. Here, we performed a mammalian protein-protein interaction trap (MAPPIT) screen to identify proteins that interact with the cytosolic N terminus of human TRPV4, a region containing the majority of disease-causing mutations. We discovered the zinc-finger domain-containing protein ZC4H2 as a TRPV4-interacting protein. In heterologous expression experiments, we found that ZC4H2 increases both the basal activity of human TRPV4 as well as Ca2+ responses evoked by ligands or hypotonic cell swelling. Using total internal reflection fluorescence (TIRF) microscopy, we further showed that ZC4H2 accelerates TRPV4 turnover at the plasma membrane. Overall, these data demonstrate that ZC4H2 is a positive modulator of TRPV4, and suggest a link between TRPV4 and ZC4H2-associated rare disorders, which have several neuromuscular symptoms in common with TRPV4-pathies.


Assuntos
Sinalização do Cálcio , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Canais de Cátion TRPV/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Pressão Osmótica , Canais de Cátion TRPV/fisiologia
2.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745319

RESUMO

DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.


Assuntos
Transporte Ativo do Núcleo Celular , Moléculas de Adesão Celular/metabolismo , Núcleo Celular/metabolismo , Neuritos/fisiologia , Sinapses/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Núcleo Celular/genética , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , beta Carioferinas/genética , beta Carioferinas/metabolismo
3.
Mol Neurodegener ; 13(1): 50, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257685

RESUMO

BACKGROUND: Neuronal Ca2+ dyshomeostasis and hyperactivity play a central role in Alzheimer's disease pathology and progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer's disease contributes to increased Ca2+ influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca2+ signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential. METHODS: Here we show, using biochemical, electrophysiological, imaging, and behavioural tools, that pharmacological modulation of Rap1 signalling by inhibiting its interaction with Pde6δ normalises disease associated Ca2+ aberrations and neuronal activity, conferring neuroprotection in models of Alzheimer's disease. RESULTS: The newly identified inhibitors of the Rap1-Pde6δ interaction counteract AD phenotypes, by reconfiguring Rap1 signalling underlying synaptic efficacy, Ca2+ influx, and neuronal repolarisation, without adverse effects in-cellulo or in-vivo. Thus, modulation of Rap1 by Pde6δ accommodates key mechanisms underlying neuronal activity, and therefore represents a promising new drug target for early or late intervention in neurodegenerative disorders. CONCLUSION: Targeting the Pde6δ-Rap1 interaction has promising therapeutic potential for disorders characterised by neuronal hyperactivity, such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Complexo Shelterina , Transdução de Sinais/fisiologia
4.
Methods Mol Biol ; 1794: 269-278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29855964

RESUMO

KISS (KInase Substrate Sensor) is a recently developed two-hybrid technology that allows in situ analysis of protein-protein interactions in intact mammalian cells. In this method, which is derived from MAPPIT (mammalian protein-protein interaction trap), the bait protein is coupled to the kinase domain of TYK2, while the prey protein is fused to a fragment of the gp130 cytokine receptor chain. Bait and prey interaction leads to phosphorylation of the gp130 anchor by TYK2, followed by recruitment and activation of STAT3, resulting in transcription of a STAT3-dependent reporter system. This approach enables the identification of interactions between proteins, including transmembrane and cytosolic proteins, and their modulation in response to physiological or pharmacological challenges. Here, we describe a detailed step-by-step protocol for the detection of an interaction between two proteins of interest using KISS.


Assuntos
Receptor gp130 de Citocina/metabolismo , Mapeamento de Interação de Proteínas/métodos , Fator de Transcrição STAT3/metabolismo , TYK2 Quinase/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Transdução de Sinais
5.
Sci Rep ; 7(1): 8941, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827617

RESUMO

The transcriptional activity of the glucocorticoid receptor (GR) is co-determined by its ability to recruit a vast and varying number of cofactors. We here identify Striatin-3 (STRN3) as a novel interaction partner of GR that interferes with GR's ligand-dependent transactivation capacity. Remarkably, STRN3 selectively affects only GR-dependent transactivation and leaves GR-dependent transrepression mechanisms unhampered. We found that STRN3 down-regulates GR transactivation by an additional recruitment of the catalytic subunit of protein phosphatase 2A (PPP2CA) to GR. We hypothesize the existence of a functional trimeric complex in the nucleus, able to dephosphorylate GR at serine 211, a known marker for GR transactivation in a target gene-dependent manner. The presence of STRN3 appears an absolute prerequisite for PPP2CA to engage in a complex with GR. Herein, the C-terminal domain of GR is essential, reflecting ligand-dependency, yet other receptor parts are also needed to create additional contacts with STRN3.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Regulação para Baixo , Proteína Fosfatase 2/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Células A549 , Sítios de Ligação , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilação , Mapas de Interação de Proteínas , Multimerização Proteica , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional
6.
PLoS One ; 12(5): e0178132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542518

RESUMO

RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.


Assuntos
Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética
7.
Bioinformatics ; 33(9): 1424-1425, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453684

RESUMO

Summary: Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. Availability and Implementation: MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. Contact: jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Análise Serial de Proteínas/métodos , Mapeamento de Interação de Proteínas/métodos , Software , Animais , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mamíferos/metabolismo
8.
Mol Cell Proteomics ; 15(12): 3624-3639, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27803151

RESUMO

Because proteins are the main mediators of most cellular processes they are also prime therapeutic targets. Identifying physical links among proteins and between drugs and their protein targets is essential in order to understand the mechanisms through which both proteins themselves and the molecules they are targeted with act. Thus, there is a strong need for sensitive methods that enable mapping out these biomolecular interactions. Here we present a robust and sensitive approach to screen proteome-scale collections of proteins for binding to proteins or small molecules using the well validated MAPPIT (Mammalian Protein-Protein Interaction Trap) and MASPIT (Mammalian Small Molecule-Protein Interaction Trap) assays. Using high-density reverse transfected cell microarrays, a close to proteome-wide collection of human ORF clones can be screened for interactors at high throughput. The versatility of the platform is demonstrated through several examples. With MAPPIT, we screened a 15k ORF library for binding partners of RNF41, an E3 ubiquitin protein ligase implicated in receptor sorting, identifying known and novel interacting proteins. The potential related to the fact that MAPPIT operates in living human cells is illustrated in a screen where the protein collection is scanned for interactions with the glucocorticoid receptor (GR) in its unliganded versus dexamethasone-induced activated state. Several proteins were identified the interaction of which is modulated upon ligand binding to the GR, including a number of previously reported GR interactors. Finally, the screening technology also enables detecting small molecule target proteins, which in many drug discovery programs represents an important hurdle. We show the efficiency of MASPIT-based target profiling through screening with tamoxifen, a first-line breast cancer drug, and reversine, an investigational drug with interesting dedifferentiation and antitumor activity. In both cases, cell microarray screens yielded known and new potential drug targets highlighting the utility of the technology beyond fundamental biology.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Análise Serial de Tecidos/métodos , Células HEK293 , Humanos , Bibliotecas de Moléculas Pequenas/metabolismo , Tamoxifeno/metabolismo
9.
Nucleic Acids Res ; 44(22): 10539-10553, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27576532

RESUMO

Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.


Assuntos
Adenilato Quinase/metabolismo , Cromatina/metabolismo , PPAR alfa/fisiologia , Receptores de Glucocorticoides/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Elementos Facilitadores Genéticos , Jejum , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Análise de Sequência de DNA , Ativação Transcricional , Transcriptoma
10.
ACS Chem Biol ; 11(8): 2075-90, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27267544

RESUMO

The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.


Assuntos
Proteínas/química , Animais , Dimerização , Descoberta de Drogas , Humanos
11.
Microbiol Mol Biol Rev ; 80(2): 495-522, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27169854

RESUMO

Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.


Assuntos
Glucocorticoides/fisiologia , Receptores de Glucocorticoides/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Núcleo Celular/metabolismo , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/imunologia , Glucocorticoides/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
12.
Nat Commun ; 7: 11416, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122307

RESUMO

Cell lysis is an inevitable step in classical mass spectrometry-based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Animais , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Ligação Proteica , Proteínas/genética , Vírion/genética , Vírion/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
13.
J Biol Chem ; 291(23): 12040-56, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27044747

RESUMO

Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1α is critical for this transition. IRE1α activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1α-interacting protein ubiquitin D (UBD) on the regulation of IRE1α and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1α interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown of UBD in human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1α activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1ß and interferon (IFN)-γ in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1α in human and rodent beta cells, modulating IRE1α-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1α/JNK pro-apoptotic pathway in cytokine-exposed beta cells.


Assuntos
Apoptose , Endorribonucleases/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/farmacologia , Endorribonucleases/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitinas/genética , Adulto Jovem
14.
EMBO Mol Med ; 8(3): 288-303, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26881969

RESUMO

Activation of the RAS oncogenic pathway, frequently ensuing from mutations in RAS genes, is a common event in human cancer. Recent reports demonstrate that reversible ubiquitination of RAS GTPases dramatically affects their activity, suggesting that enzymes involved in regulating RAS ubiquitination may contribute to malignant transformation. Here, we identified the de-ubiquitinase OTUB1 as a negative regulator of RAS mono- and di-ubiquitination. OTUB1 inhibits RAS ubiquitination independently of its catalytic activity resulting in sequestration of RAS on the plasma membrane. OTUB1 promotes RAS activation and tumorigenesis in wild-type RAS cells. An increase of OTUB1 expression is commonly observed in non-small-cell lung carcinomas harboring wild-type KRAS and is associated with increased levels of ERK1/2 phosphorylation, high Ki67 score, and poorer patient survival. Our results strongly indicate that dysregulation of RAS ubiquitination represents an alternative mechanism of RAS activation during lung cancer development.


Assuntos
Cisteína Endopeptidases/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Modelos Animais de Doenças , Humanos , Camundongos Nus , Ubiquitinação
15.
Mol Ther ; 24(4): 707-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26675501

RESUMO

Protein-protein interactions (PPIs) underlie most biological processes. An increasing interest to investigate the unexplored potential of PPIs in drug discovery is driven by the need to find novel therapeutic targets for a whole range of diseases with a high unmet medical need. To date, PPI inhibition with small molecules is the mechanism that has most often been explored, resulting in significant progress towards drug development. However, also PPI stabilization is gradually gaining ground. In this review, we provide a focused overview of a number of PPIs that control critical regulatory pathways and constitute targets for the design of novel therapeutics. We discuss PPI-modulating small molecules that are already pursued in clinical trials. In addition, we review a number of PPIs that are still under preclinical investigation but for which preliminary data support their use as therapeutic targets.


Assuntos
Descoberta de Drogas/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Mapeamento de Interação de Proteínas , Proteínas/metabolismo
16.
Methods Mol Biol ; 1278: 447-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859968

RESUMO

MAPPIT (MAmmalian Protein-Protein Interaction Trap) is a two-hybrid technology that facilitates the detection and analysis of interactions between proteins in living mammalian cells. The system is based on type 1 cytokine receptor signaling. The bait protein of interest is fused to a chimeric signaling-deficient cytokine receptor, the signaling competence of which is restored upon recruitment of a prey protein that is coupled to a functional cytokine receptor domain. MAPPIT exhibits an excellent signal-to-noise ratio, detects a wide variety of protein-protein interactions (PPIs) including transient and indirect interactions, and has been shown to be highly complementary to other two-hybrid methods with respect to the interactions it can detect. Variants of the method were developed to allow large-scale PPI screening, mapping of protein interaction interfaces, PPI inhibitor screening and drug profiling. This chapter describes a basic 4-day MAPPIT protocol for the analysis of interaction between two designated proteins.


Assuntos
Citocinas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Receptores de Citocinas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Linhagem Celular , Citocinas/genética , Humanos , Mamíferos , Ligação Proteica , Receptores de Citocinas/química , Transdução de Sinais/genética , Razão Sinal-Ruído
17.
Chembiochem ; 16(5): 834-43, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25688755

RESUMO

We report the evaluation of two alternative chemical dimerizer approaches aimed at increasing the sensitivity of MASPIT, a three-hybrid system that enables small-molecule target protein profiling in intact human cells. To circumvent the potential limitations related to the binding of methotrexate (MTX) to endogenous human dihydrofolate reductase (DHFR), we explored trimethoprim (TMP) as an alternative prokaryote-specific DHFR ligand. MASPIT evaluation of TMP fusion compounds with tamoxifen, reversine, and simvastatin as model baits, resulted in dose-response curves shifted towards lower EC50 values than those of their MTX congeners. Furthermore, a scalable azido-TMP reagent was synthesized that displayed a similar improvement in sensitivity, possibly owing to increased membrane permeability relative to the MTX anchor. Applying the SNAP-tag approach to introduce a covalent bond into the system, on the other hand, produced an inferior readout than in the MTX- or TMP-tag based assay.


Assuntos
Indicadores e Reagentes/metabolismo , Metotrexato/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/química , Trimetoprima/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Indicadores e Reagentes/síntese química , Indicadores e Reagentes/química , Ligantes , Metotrexato/química , Estrutura Molecular , Tetra-Hidrofolato Desidrogenase/química , Trimetoprima/síntese química
18.
Cell Signal ; 27(2): 340-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25460044

RESUMO

The timely orchestration of multiple signalling pathways is crucial for the integrity of an organism and therefore tightly controlled. Gab family proteins coordinate signal transduction at the plasma membrane (PM) by acting as docking platforms for signalling components involved in MAP kinase (MAPK), PI3 kinase (PI3K), phospholipase C (PLC) and Rho family GTPase signalling. The interaction with these components as well as the targeting of the docking platform to the PM underlies complex spatial and temporal regulatory mechanisms. Deregulated Gab1 activation and membrane binding have been observed in some haematopoietic malignancies and solid tumours, thereby contributing, for example, to the development of Philadelphia chromosome-negative myeloproliferative neoplasms and certain lung cancers. Previously, we could demonstrate that the presence of PIP3 in the PM, which is increased in many cancer cells, is not sufficient for constitutive Gab1 membrane recruitment. In addition, MAPK-dependent phosphorylation of Gab1 at serine 552 (Ser552) is vital for Gab1 membrane binding. Here, we confirm our hypothesis that in the absence of MAPK activity an intrinsic part of Gab1 prevents binding to PIP3 at the PM. This epitope of Gab1, which encompasses Ser552, interacts directly with the Gab1 PH domain. Two arginines located in positions +4 and +8 of Ser552 are essential for the interaction with the PH domain, as well as for the inhibition of membrane recruitment of unphosphorylated Gab1. Ser552 phosphorylation is dispensable in respective arginine to alanine mutants of Gab1. Gab1 recruitment to the PM is highly dynamic and continuous PI3K and MAPK activities are both essential for sustained Gab1 membrane localisation. Our data document the existence of a sophisticated and robust control mechanism that prevents Gab1 translocation and signalling complex assembly after the activation of either MAPK or PI3K alone.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Androstadienos/farmacologia , Butadienos/farmacologia , Cromonas/farmacologia , Células HEK293 , Humanos , Interleucina-6/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Dados de Sequência Molecular , Morfolinas/farmacologia , Mutação , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Translocação Genética/efeitos dos fármacos , Wortmanina
19.
Mol Cell Proteomics ; 13(12): 3332-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25154561

RESUMO

Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent ß-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges.


Assuntos
Técnicas Biossensoriais/métodos , Mapeamento de Interação de Proteínas/métodos , TYK2 Quinase/genética , Técnicas do Sistema de Duplo-Híbrido , Arrestinas/genética , Arrestinas/metabolismo , Benchmarking , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais , TYK2 Quinase/metabolismo , beta-Arrestinas
20.
J Biol Chem ; 289(30): 20677-93, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24936061

RESUMO

Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1ß and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from "physiological" to "pathological" UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell "adaptation," "stress response," or "apoptosis" remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1ß and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells


Assuntos
Endorribonucleases/metabolismo , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Idoso , Animais , Apoptose/fisiologia , Endorribonucleases/genética , Células HEK293 , Humanos , Células Secretoras de Insulina/citologia , Interferon gama/genética , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...