Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Intensive Care Med Exp ; 12(1): 77, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225817

RESUMO

BACKGROUND: Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS: Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS: Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS: In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.

2.
J Nucl Med ; 64(3): 423-429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109184

RESUMO

Today, there is a lack of clinically available imaging techniques to detect and quantify specific immune cell populations. Neutrophils are one of the first immune cells at the site of inflammation, and they secrete the serine protease neutrophil elastase (NE), which is crucial in the fight against pathogens. However, the prolonged lifespan of neutrophils increases the risk that patients will develop severe complications, such as acute respiratory distress syndrome (ARDS). Here, we evaluated the novel radiolabeled NE inhibitor 11C-GW457427 in a pig model of ARDS, for detection and quantification of neutrophil activity in the lungs. Methods: ARDS was induced by intravenous administration of oleic acid to 5 farm pigs, and 4 were considered healthy controls. The severity of ARDS was monitored by clinical parameters of lung function and plasma biomarkers. Each pig was studied with 11C-GW457427 and PET/CT, before and after pretreatment with the NE inhibitor GW311616 to determine in vivo binding specificity. PET image data were analyzed as SUVs and correlated with immunohistochemical staining for NE in biopsies. Results: The binding of 11C-GW457427 was increased in pig lungs with induced ARDS (median SUVmean, 1.91; interquartile range [IQR], 1.67-2.55) compared with healthy control pigs (P < 0.05 and P = 0.03, respectively; median SUVmean, 1.04; IQR, 0.66-1.47). The binding was especially strong in lung regions with high levels of NE and ongoing inflammation, as verified by immunohistochemistry. The binding was successfully blocked by pretreatment of an NE inhibitor drug, which demonstrated the in vivo specificity of 11C-GW457427 (P < 0.05 and P = 0.04, respectively; median SUVmean, 0.60; IQR, 0.58-0.77). The binding in neutrophil-rich tissues such as bone marrow (P < 0.05 and P = 0.04, respectively; baseline median SUVmean, 5.01; IQR, 4.48-5.49; block median SUVmean, 1.57; IQR, 0.95-1.85) and spleen (median SUVmean, 2.14; IQR, 1.19-2.36) was also high in all pigs. Conclusion: 11C-GW457427 binds to NE in a porcine model of oleic acid-induced lung inflammation in vivo, with a specific increase in regional lung, bone marrow, and spleen SUV. 11C-GW457427 is a promising tool for localizing, tracking, and quantifying neutrophil-facilitated inflammation in clinical diagnostics and drug development.


Assuntos
Elastase de Leucócito , Síndrome do Desconforto Respiratório , Animais , Suínos , Elastase de Leucócito/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/efeitos adversos , Ácido Oleico/uso terapêutico , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Inflamação/complicações , Neutrófilos
3.
Respir Res ; 23(1): 324, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36419132

RESUMO

BACKGROUND: The physiological response and the potentially beneficial effects of positive end-expiratory pressure (PEEP) for lung protection and optimization of ventilation during spontaneous breathing in patients with acute respiratory distress syndrome (ARDS) are not fully understood. The aim of the study was to compare the effect of different PEEP levels on tidal volume distribution and on the ventilation of dependent lung region during neurally adjusted ventilatory assist (NAVA). METHODS: ARDS-like lung injury was induced by using saline lavage in 10 anesthetized and spontaneously breathing farm-bred pigs. The animals were ventilated in NAVA modality and tidal volume distribution as well as dependent lung ventilation were assessed using electric impedance tomography during the application of PEEP levels from 0 to 15 cmH20, in steps of 3 cmH20. Tidal volume distribution and dependent fraction of ventilation were analysed using Wilcoxon signed rank test. Furthermore, airway, esophageal and transpulmonary pressure, as well as airway flow and delivered volume, were continuously measured during the assisted spontaneous breathing. RESULTS: Increasing PEEP improved oxygenation and re-distributed tidal volume. Specifically, ventilation distribution changed from a predominant non-dependent to a more even distribution between non-dependent and dependent areas of the lung. Dependent fraction of ventilation reached 47 ± 9% at PEEP 9 cmH20. Further increasing PEEP led to a predominant dependent ventilation. CONCLUSION: During assisted spontaneous breathing in this model of induced ARDS, PEEP modifies the distribution of ventilation and can achieve a homogenizing effect on its spatial arrangement. The study indicates that PEEP is an important factor during assisted spontaneous breathing and that EIT can be of valuable interest when titrating PEEP level during spontaneous breathing, by indicating the most homogeneous distribution of gas volumes throughout the PEEP spectrum.


Assuntos
Suporte Ventilatório Interativo , Síndrome do Desconforto Respiratório , Suínos , Animais , Volume de Ventilação Pulmonar , Síndrome do Desconforto Respiratório/terapia , Modelos Animais de Doenças , Respiração Artificial
4.
EJNMMI Res ; 12(1): 19, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394238

RESUMO

PURPOSE: In the characterization of severe lung diseases, early detection of specific inflammatory cells could help to monitor patients' response to therapy and increase chances of survival. Macrophages contribute to regulating the resolution and termination of inflammation and have increasingly been of interest for targeted therapies. [68Ga]Ga-DOTA-TATE is an established clinical radiopharmaceutical targeting somatostatin receptor subtype 2 (SSTR 2). Since activated macrophages (M1) overexpress SSTR 2, the aim of this study was to investigate the applicability of [68Ga]Ga-DOTA-TATE for positron emission tomography (PET) imaging of M1 macrophages in pulmonary inflammation. METHODS: Inflammation in the pig lungs was induced by warm saline lavage followed by injurious ventilation in farm pigs (n = 7). Healthy pigs (n = 3) were used as control. A 60-min dynamic PET scan over the lungs was performed after [68Ga]Ga-DOTA-TATE injection and [18F]FDG scan was executed afterward for comparison. The uptake of both tracers was assessed as mean standardized uptake values (SUVmean) 30-60-min post-injection. The PET scans were followed by computed tomography (CT) scans, and the Hounsfield units (HU) were quantified of the coronal segments. Basal and apical segments of the lungs were harvested for histology staining. A rat lung inflammation model was also studied for tracer specificity using lipopolysaccharides (LPS) by oropharyngeal aspiration. Organ biodistribution, ex vivo autoradiography (ARG) and histology samples were conducted on LPS treated, octreotide induced blocking and control healthy rats. RESULTS: The accumulation of [68Ga]Ga-DOTA-TATE on pig lavage model was prominent in the more severely injured dorsal segments of the lungs (SUVmean = 0.91 ± 0.56), compared with control animals (SUVmean = 0.27 ± 0.16, p < 0.05). The tracer uptake corresponded to the damaged areas assessed by CT and histology and were in line with HU quantification. The [68Ga]Ga-DOTA-TATE uptake in LPS treated rat lungs could be blocked and was significantly higher compared with control group. CONCLUSION: The feasibility of the noninvasive assessment of tissue macrophages using [68Ga]Ga-DOTA-TATE/PET was demonstrated in both porcine and rat lung inflammation models. [68Ga]Ga-DOTA-TATE has a great potential to be used to study the role and presence of macrophages in humans in fight against severe lung diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA