Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol Reg Stud Reports ; 51: 101031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772647

RESUMO

The Mexican free-tailed bat (Tadarida brasiliensis) is one of the most abundant mammals in North America. Mexican free-tailed bats have a wide geographic range stretching from northern South America to the western United States. Bats are theorized to be the original hosts for Trypanosoma cruzi -the causative agent of Chagas disease- and can serve as a source of infection to triatomine insect vectors that feed upon them. Chagas disease is a neglected tropical disease across the Americas where triatomines are present, including the southern United States, where Texas reports this highest number of locally-acquired human cases. To learn more about the role of bats in the ecology of Chagas disease in Texas, we surveyed a colony of Mexican free-tailed bats from Brazos County, Texas, for T. cruzi using carcasses salvaged after an extreme weather event. A total of 283 Mexican free-tailed bats collected in February 2021 were dissected and DNA from the hearts and kidneys was used for T. cruzi detection via qPCR. None of the bat hearts or kidneys tested positive for T. cruzi; this sample size affords 95% confidence that the true prevalence of T. cruzi in this population does not exceed 1%. Future sampling of multiple bat species as well as migrant and resident colonies of Mexican free-tailed bats across different times of the year over a broader geographic range would be useful in learning more about the role of bats in the ecology of Chagas disease in Texas.


Assuntos
Doença de Chagas , Quirópteros , Trypanosoma cruzi , Animais , Quirópteros/parasitologia , Texas/epidemiologia , Trypanosoma cruzi/isolamento & purificação , Doença de Chagas/veterinária , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Masculino , Feminino
2.
J Wildl Dis ; 57(3): 667-671, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015810

RESUMO

The federally endangered ocelot (Leopardus pardalis) population of south Texas, USA is declining; fewer than an estimated 80 ocelots remain. South Texas has robust transmission of Trypanosoma cruzi, the protozoan parasite causing Chagas disease in humans and various mammals. This parasite's impact in ocelots is unknown. Blood from live-trapped ocelots was collected by US Fish and Wildlife Service personnel in an annual monitoring program; additionally, tissues were obtained from carcasses collected from 2010 to 2017 around Laguna Atascosa National Wildlife Refuge in south Texas and placed in scientific collections. Variable samples were available from 21 ocelots: skeletal muscle (n=15), heart tissue (n=5), lung (n=1), kidney (n=1), spleen (n=1), liver (n=1), blood clot (n=9), and serum (n=3). Overall, 3/21 (14.3%) ocelots showed evidence of T. cruzi infection or exposure, with T. cruzi PCR-positive samples of skeletal muscle, heart, and blood clot, respectively. All three were infected with the T. cruzi discrete taxonomic unit "TcI"; one of these ocelots also had anti-T. cruzi antibodies. Lymphoplasmacytic inflammation was noted in the PCR-positive heart tissue and in some PCR-negative tissues from this and other individuals. Incidentally, Sarcocystis spp. were noted histologically in five ocelots. Trypanosoma cruzi infection and associated cardiac lesions suggest that this parasite should be further investigated in vulnerable populations.


Assuntos
Doença de Chagas , Sarcocystis , Trypanosoma cruzi , Animais , Animais Selvagens , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Texas/epidemiologia
3.
Elife ; 102021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33616530

RESUMO

March Mammal Madness is a science outreach project that, over the course of several weeks in March, reaches hundreds of thousands of people in the United States every year. We combine four approaches to science outreach - gamification, social media platforms, community event(s), and creative products - to run a simulated tournament in which 64 animals compete to become the tournament champion. While the encounters between the animals are hypothetical, the outcomes rely on empirical evidence from the scientific literature. Players select their favored combatants beforehand, and during the tournament scientists translate the academic literature into gripping "play-by-play" narration on social media. To date ~1100 scholarly works, covering almost 400 taxa, have been transformed into science stories. March Mammal Madness is most typically used by high-school educators teaching life sciences, and we estimate that our materials reached ~1% of high-school students in the United States in 2019. Here we document the intentional design, public engagement, and magnitude of reach of the project. We further explain how human psychological and cognitive adaptations for shared experiences, social learning, narrative, and imagery contribute to the widespread use of March Mammal Madness.


Assuntos
Comportamento Animal , Educação/métodos , Mamíferos , Animais , Gamificação , Humanos , Narração , Mídias Sociais , Estudantes
4.
Front Zool ; 18(1): 4, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485360

RESUMO

BACKGROUND: Captive facilities such as zoos are uniquely instrumental in conservation efforts. To fulfill their potential as bastions for conservation, zoos must preserve captive populations as appropriate proxies for their wild conspecifics; doing so will help to promote successful reintroduction efforts. Morphological changes within captive populations may be detrimental to the fitness of individual animals because these changes can influence functionality; thus, it is imperative to understand the breadth and depth of morphological changes occurring in captive populations. Here, we conduct a meta-analysis of scientific literature reporting comparisons of cranial measures between captive and wild populations of mammals. We investigate the pervasiveness of cranial differences and whether cranial morphological changes are associated with ecological covariates specific to individual species, such as trophic level, dietary breadth, and home range size. RESULTS: Cranial measures of skull length, skull width, and the ratio of skull length-to-width differed significantly between many captive and wild populations of mammals reported in the literature. Roughly half of captive populations differed from wild populations in at least one cranial measure, although the degree of changes varied. Carnivorous species with a limited dietary breadth displayed the most consistent changes associated with skull widening. Species with a more generalized diet displayed less morphological changes in captivity. CONCLUSIONS: Wild and captive populations of mammals differed in cranial morphology, but the nature and magnitude of their cranial differences varied considerably across taxa. Although changes in cranial morphology occur in captivity, specific changes cannot be generalized for all captive mammal populations. The nature of cranial changes in captivity may be specific to particular taxonomic groups; thus, it may be possible to establish expectations across smaller taxonomic units, or even disparate groups that utilize their cranial morphology in a similar way. Given that morphological changes occurring in captive environments like zoos have the potential to limit reintroduction success, our results call for a critical evaluation of current captive husbandry practices to prevent unnecessary morphological changes.

5.
Exp Appl Acarol ; 79(1): 87-97, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31552562

RESUMO

Few studies have documented the indirect effects of predators on tick behavior. We conducted behavioral assays in the laboratory to quantify the effects of a highly abundant predator, the red imported fire ant (Solenopsis invicta), on three species of ticks endemic to the southern USA: the lone star tick (Amblyomma americanum), the Gulf Coast tick (A. maculatum), and the Cayenne tick (A. mixtum). We documented ant aggression toward ticks (biting, carrying, and stinging) and determined the effects of ants on tick activity. Ticks were significantly less active in the presence of fire ants, and tick activity was negatively associated with ant aggression, but in many cases the effects of fire ants on ticks varied by tick species, stage, and engorgement status. For example, fire ants took half as long (~ 62 s) to become aggressive toward unfed A. americanum adults compared with unfed A. maculatum, and only ~ 8 s to become aggressive toward engorged A. maculatum nymphs. Correspondingly, the activity of unfed A. americanum adults and engorged A. maculatum nymphs was reduced by 67 and 93%, respectively, in the presence of fire ants. This reduction in tick activity translated to less questing by unfed ticks and less time spent walking by engorged nymphs. Our results suggest that fire ants may have important non-consumptive effects on ticks and demonstrate the importance of measuring the indirect effects of predators on tick behavior.


Assuntos
Formigas/fisiologia , Ixodidae/fisiologia , Agressão , Animais , Ixodidae/crescimento & desenvolvimento , Atividade Motora , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Especificidade da Espécie
6.
Ecol Evol ; 9(13): 7410-7424, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346412

RESUMO

We synthesize observations from 1979 to 2016 of a contact zone involving two subspecies of pocket gophers (Thomomys bottae connectens and T. b. opulentus) and their respective chewing lice (Geomydoecus aurei and G. centralis) along the Río Grande Valley in New Mexico, U.S.A., to test predictions about the dynamics of the zone. Historically, the natural flood cycle of the Rio Grande prevented contact between the two subspecies of pocket gophers. Flood control measures completed in the 1930s permitted contact, thus establishing the hybrid zone between the pocket gophers and the contact zone between their lice (without hybridization). Since that time, the pocket gopher hybrid zone has stabilized, whereas the northern chewing louse species has replaced the southern louse species at a consistent rate of ~150 m/year. The 0.2-0.8 width of the replacement zone has remained constant, reflecting the constant rate of chewing louse species turnover on a single gopher and within a local pocket gopher population. In contrast, the full width of the replacement zone (northernmost G. centralis to southernmost G. aurei) has increased annually. By employing a variety of metrics of the species replacement zone, we are better able to understand the dynamics of interactions between and among the chewing lice and their pocket gopher hosts. This research provides an opportunity to observe active species replacement and resulting distributional shifts in a parasitic organism in its natural setting.

7.
Mol Ecol ; 28(4): 703-720, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30589151

RESUMO

Understanding the genetic consequences of changes in species distributions has wide-ranging implications for predicting future outcomes of climate change, for protecting threatened or endangered populations and for understanding the history that has led to current genetic patterns within species. Herein, we examine the genetic consequences of range expansion over a 25-year period in a parasite (Geomydoecus aurei) that is in the process of expanding its geographic range via invasion of a novel host. By sampling the genetics of 1,935 G. aurei lice taken from 64 host individuals collected over this time period using 12 microsatellite markers, we test hypotheses concerning linear spatial expansion, genetic recovery time and allele surfing. We find evidence of decreasing allelic richness (AR) with increasing distance from the source population, supporting a linear, stepping stone model of spatial expansion that emphasizes the effects of repeated bottleneck events during colonization. We provide evidence of post-bottleneck genetic recovery, with average AR of infrapopulations increasing about 30% over the 225-generation span of time observed directly in this study. Our estimates of recovery rate suggest, however, that recovery has plateaued and that this population may not reach genetic diversity levels of the source population without further immigration from the source population. Finally, we employ a grid-based sampling scheme in the region of ongoing population expansion and provide empirical evidence for the power of allele surfing to impart genetic structure on a population, even under conditions of selective neutrality and in a place that lacks strong barriers to gene flow.


Assuntos
Iscnóceros/patogenicidade , Alelos , Animais , Fluxo Gênico/genética , Variação Genética/genética , Genética Populacional , Iscnóceros/genética , Repetições de Microssatélites/genética , Modelos Genéticos
8.
Emerg Infect Dis ; 24(6): 1069-1072, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774837

RESUMO

Northern pygmy mice from 2 localities in East Central Texas, USA, had proliferative epidermal lesions on the tail and feet. Electron microscopy of lesion tissue revealed poxvirus. Phylogenetic analyses indicated the virus differed 35% from its closest relatives, the Chordopoxvirinae. Future research is needed to determine whether this virus could affect human health.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Infecções por Poxviridae/veterinária , Poxviridae/classificação , Poxviridae/fisiologia , Roedores , Doenças dos Animais/diagnóstico , Animais , Epiderme/patologia , Epiderme/ultraestrutura , Epiderme/virologia , Genes Virais , Masculino , Camundongos , Filogenia , Texas/epidemiologia , Zoonoses
9.
J Parasitol ; 103(2): 152-160, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28067108

RESUMO

Host associations of highly host-specific chewing lice (Insecta: Phthiraptera) across multiple avian species remains fairly undocumented in the West African country of Benin. Two hundred and seventeen bird specimens collected from multiple localities across Benin and housed at the Texas A&M University Biodiversity Research and Teaching Collections were examined for lice. Lice were identified and genetic data (mitochondrial COI and nuclear EF-1α genes) were obtained and phylogenetically analyzed. In total, we found 15 host associations, 7 of which were new to science. Genetically, most lice from Benin were unique and could represent new species. Based on host associations and unique genetic lineages, we estimate we discovered a minimum of 4 and possibly as many as 8 new chewing louse species. Given the lack of current data on chewing louse species distributions in Benin, this study adds to the knowledge of host associations, geographic distribution, and genetic variability of avian chewing louse species in West Africa.


Assuntos
Doenças das Aves/parasitologia , Variação Genética , Especificidade de Hospedeiro , Infestações por Piolhos/veterinária , Ftirápteros/genética , Animais , Teorema de Bayes , Benin/epidemiologia , Doenças das Aves/epidemiologia , Aves , DNA/química , DNA/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Fator 1 de Elongação de Peptídeos/genética , Ftirápteros/classificação , Ftirápteros/fisiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária
10.
Biol Lett ; 12(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27651533

RESUMO

Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales.


Assuntos
Formigas , Mamíferos/parasitologia , Rickettsia/isolamento & purificação , Carrapatos/microbiologia , Animais , Vetores Artrópodes , Ecossistema , Inseticidas , Espécies Introduzidas , Larva/microbiologia , Ninfa/microbiologia , Dinâmica Populacional , Texas , Carrapatos/crescimento & desenvolvimento
11.
PeerJ ; 4: e2187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547523

RESUMO

Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain.

12.
Ecol Evol ; 3(8): 2497-513, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24567823

RESUMO

The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Dark (Microdipodops megacephalus) and pallid (M. pallidus) kangaroo mice are ecological specialists found within the Great Basin Desert and are potentially ideal organisms for assessing ecosystem health and inferring the biogeographic history of this vulnerable region. Herein, newly acquired nuclear-encoded microsatellite loci were utilized to assess patterns of variation within and among spatially discrete groups of kangaroo mice and to evaluate gene flow, demographic trends, and genetic integrity. Results confirm that there are at least three genetically distinct units within M. megacephalus and two such units within M. pallidus. The three units of M. megacephalus appear to have different demographic histories, with effectively no gene flow among them since their divergence. Similarly, the two units of M. pallidus also appear to have experienced different demographic histories, with effectively no gene exchange. Contemporary effective population sizes of all groups within Microdipodops appear to be low (<500), suggesting that each genetic lineage may have difficulty coping with changing environmental pressures and hence may be at risk of extirpation. Results of this study indicate that each Microdipodops group should be recognized, and therefore managed, as a separate unit in an effort to conserve these highly specialized taxa that contribute to the diversity of the Great Basin Desert ecosystem. The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Herein, newly acquired nuclear-encoded microsatellite loci were utilized to assess patterns of variation within and among spatially discrete groups of the dark (Microdipodops megacephalus) and pallid (M. pallidus) kangaroo mouse, and to evaluate gene flow, demographic trends, and genetic integrity. Results of this study indicate that each Microdipodops group should be recognized, and therefore managed, as a separate unit in an effort to conserve these highly specialized taxa that contribute to the diversity of the Great Basin Desert ecosystem (photo credit J. C. Hafner).

13.
J Parasitol ; 98(2): 262-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22010942

RESUMO

Many species of pocket gophers and their ectoparasitic chewing lice have broadly congruent phylogenies, indicating a history of frequent codivergence. For a variety of reasons, phylogenies of codiverging hosts and parasites are expected to be less congruent for more recently diverged taxa. This study is the first of its scale in the pocket gopher and chewing louse system, with its focus entirely on comparisons among populations within a single species of host and 3 chewing louse species in the Geomydoecus bulleri species complex. We examined mitochondrial DNA from a total of 46 specimens of Geomydoecus lice collected from 11 populations of the pocket gopher host, Pappogeomys bulleri. We also examined nuclear DNA from a subset of these chewing lice. Louse phylogenies were compared with a published pocket gopher phylogeny. Contrary to expectations, we observed a statistically significant degree of parallel cladogenesis in these closely related hosts and their parasites. We also observed a higher rate of evolution in chewing louse lineages than in their corresponding pocket gopher hosts. In addition, we found that 1 louse species (Geomydoecus burti) may not be a valid species, that subspecies within G. bulleri are not reciprocally monophyletic, and that morphological and genetic evidence support recognition of a new species of louse, Geomydoecus pricei.


Assuntos
Geômis/parasitologia , Iscnóceros/classificação , Infestações por Piolhos/veterinária , Filogenia , Doenças dos Roedores/parasitologia , Animais , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , Feminino , Geômis/genética , Especificidade de Hospedeiro , Iscnóceros/anatomia & histologia , Iscnóceros/genética , Infestações por Piolhos/parasitologia , Funções Verossimilhança , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária
14.
BMC Evol Biol ; 11: 163, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21672229

RESUMO

BACKGROUND: The Old World warbler genus Sylvia has been used extensively as a model system in a variety of ecological, genetic, and morphological studies. The genus is comprised of about 25 species, and 70% of these species have distributions at or near the Mediterranean Sea. This distribution pattern suggests a possible role for the Messinian Salinity Crisis (from 5.96-5.33 Ma) as a driving force in lineage diversification. Other species distributions suggest that Late Miocene to Pliocene Afro-tropical forest dynamics have also been important in the evolution of Sylvia lineages. Using a molecular phylogenetic hypothesis and other methods, we seek to develop a biogeographic hypothesis for Sylvia and to explicitly assess the roles of these climate-driven events. RESULTS: We present the first strongly supported molecular phylogeny for Sylvia. With one exception, species fall into one of three strongly supported clades: one small clade of species distributed mainly in Africa and Europe, one large clade of species distributed mainly in Africa and Asia, and another large clade with primarily a circum-Mediterranean distribution. Asia is reconstructed as the ancestral area for Sylvia. Long-distance migration is reconstructed as the ancestral character state for the genus, and sedentary behavior subsequently evolved seven times. CONCLUSION: Molecular clock calibration suggests that Sylvia arose in the early Miocene and diverged into three main clades by 12.6 Ma. Divergence estimates indicate that the Messinian Salinity Crisis had a minor impact on Sylvia. Instead, over-water dispersals, repeated loss of long-distance migration, and palaeo-climatic events in Africa played primary roles in Sylvia divergence and distribution.


Assuntos
Migração Animal , Filogenia , Aves Canoras/genética , África , Animais , Ásia , Clima , Europa (Continente) , Filogeografia
15.
Biol Lett ; 7(5): 782-5, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-21471047

RESUMO

For modern lineages of birds and mammals, few fossils have been found that predate the Cretaceous-Palaeogene (K-Pg) boundary. However, molecular studies using fossil calibrations have shown that many of these lineages existed at that time. Both birds and mammals are parasitized by obligate ectoparasitic lice (Insecta: Phthiraptera), which have shared a long coevolutionary history with their hosts. Evaluating whether many lineages of lice passed through the K-Pg boundary would provide insight into the radiation of their hosts. Using molecular dating techniques, we demonstrate that the major louse suborders began to radiate before the K-Pg boundary. These data lend support to a Cretaceous diversification of many modern bird and mammal lineages.


Assuntos
Aves/parasitologia , Fósseis , Mamíferos/parasitologia , Ftirápteros/classificação , Animais
16.
Mol Biol Evol ; 28(1): 29-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20823373

RESUMO

Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene.


Assuntos
Vestuário , Infestações por Piolhos , Ftirápteros , Animais , África , Teorema de Bayes , Evolução Biológica , Clima , Temperatura Baixa , Fósseis , Ftirápteros/genética , Ftirápteros/parasitologia , Humanos
17.
BMC Evol Biol ; 10: 292, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20860811

RESUMO

BACKGROUND: Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. RESULTS: This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. CONCLUSIONS: The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events early in the association between anoplurans and mammals, there is substantial conflict between the host and parasite phylogenies. This conflict is likely the result of a complex history of host switching and extinction events that occurred throughout the evolutionary association between sucking lice and their mammalian hosts. It is unlikely that there are any ectoparasite groups (including lice) that tracked the early and rapid radiation of eutherian mammals.


Assuntos
Anoplura/classificação , Filogenia , Animais , Teorema de Bayes
18.
PLoS One ; 4(3): e4969, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19305500

RESUMO

BACKGROUND: Primary bacterial endosymbionts of insects (p-endosymbionts) are thought to be undergoing the process of Muller's ratchet where they accrue slightly deleterious mutations due to genetic drift in small populations with negligible recombination rates. If this process were to go unchecked over time, theory predicts mutational meltdown and eventual extinction. Although genome degradation is common among p-endosymbionts, we do not observe widespread p-endosymbiont extinction, suggesting that Muller's ratchet may be slowed or even stopped over time. For example, selection may act to slow the effects of Muller's ratchet by removing slightly deleterious mutations before they go to fixation thereby causing a decrease in nucleotide substitutions rates in older p-endosymbiont lineages. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether selection is slowing the effects of Muller's ratchet, we determined the age of the Candidatus Riesia/sucking louse assemblage and analyzed the nucleotide substitution rates of several p-endosymbiont lineages that differ in the length of time that they have been associated with their insect hosts. We find that Riesia is the youngest p-endosymbiont known to date, and has been associated with its louse hosts for only 13-25 My. Further, it is the fastest evolving p-endosymbiont with substitution rates of 19-34% per 50 My. When comparing Riesia to other insect p-endosymbionts, we find that nucleotide substitution rates decrease dramatically as the age of endosymbiosis increases. CONCLUSIONS/SIGNIFICANCE: A decrease in nucleotide substitution rates over time suggests that selection may be limiting the effects of Muller's ratchet by removing individuals with the highest mutational loads and decreasing the rate at which new mutations become fixed. This countering effect of selection could slow the overall rate of endosymbiont extinction.


Assuntos
Bactérias/genética , Insetos/microbiologia , Mutação , Seleção Genética , Simbiose/fisiologia , Animais , Bactérias/metabolismo , Evolução Molecular , Humanos , Funções Verossimilhança , Filogenia
19.
Mol Phylogenet Evol ; 50(2): 376-90, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19027083

RESUMO

Cospeciation between hosts and parasites offers a unique opportunity to use information from parasites to infer events in host evolutionary history. Although lice (Insecta: Phthiraptera) are known to cospeciate with their hosts and have frequently served as important markers to infer host evolutionary history, most molecular studies are based on only one or two markers. Resulting phylogenies may, therefore, represent gene histories (rather than species histories), and analyses of multiple molecular markers are needed to increase confidence in the results of phylogenetic analyses. Herein, we phylogenetically examine nine molecular markers in primate sucking lice (Phthiraptera: Anoplura) and we use these markers to estimate divergence times among louse lineages. Individual and combined analyses of these nine markers are, for the most part, congruent, supporting relationships hypothesized in previous studies. Only one marker, the nuclear protein-coding gene Histone 3, has a significantly different tree topology compared to the other markers. The disparate evolutionary history of this marker, however, has no significant effect on topology or nodal support in the combined phylogenetic analyses. Therefore, phylogenetic results from the combined data set likely represent a solid hypothesis of species relationships. Additionally, we find that simultaneous use of multiple markers and calibration points provides the most reliable estimates of louse divergence times, in agreement with previous studies estimating divergences among species. Estimates of phylogenies and divergence times also allow us to verify the results of [Reed, D.L., Light, J.E., Allen, J.M., Kirchman, J.J., 2007. Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol. 5, 7.]; there was probable contact between gorilla and archaic hominids roughly 3 Ma resulting in a host switch of Pthirus lice from gorillas to archaic hominids. Thus, these results provide further evidence that data from cospeciating organisms can yield important information about the evolutionary history of their hosts.


Assuntos
Anoplura/genética , Evolução Molecular , Filogenia , Primatas/parasitologia , Animais , Anoplura/classificação , Teorema de Bayes , DNA Mitocondrial/genética , Genes de Insetos , Marcadores Genéticos , Especiação Genética , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA
20.
J Parasitol ; 94(6): 1275-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18576877

RESUMO

Human head lice (Pediculus humanus capitis) are subdivided into 3 deeply divergent mitochondrial clades (Clades A, B, and C), each having unique geographical distributions. Determining the evolutionary history and geographic distribution of these mitochondrial clades can elucidate the evolutionary history of the lice as well as their human hosts. Previous data suggest that lice belonging to mitochondrial Clade B may have originated in North America or Asia; however, geographic sampling and sample sizes have been limited. With newly collected lice, we calculate the relative frequency, geographic distribution, and genetic diversity of louse mitochondrial clades to determine the geographic origin of lice belonging to Clade B. In agreement with previous studies, genetic diversity data support a North American origin of Clade B lice. It is likely that lice belonging to this mitochondrial clade recently migrated to other geographic localities, e.g., Europe and Australia, and, if not already present, may disperse further to occupy all geographic regions.


Assuntos
Genes Mitocondriais , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Pediculus/classificação , Animais , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Genética Populacional , Humanos , Pediculus/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...