Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
FASEB J ; 38(10): e23692, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38786655

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , Eicosanoides , Epóxido Hidrolases , SARS-CoV-2 , Animais , Camundongos , Eicosanoides/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , SARS-CoV-2/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Citocinas/metabolismo , Humanos , Pulmão/virologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Modelos Animais de Doenças , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Feminino
2.
EBioMedicine ; 103: 105127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677183

RESUMO

BACKGROUND: Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS: We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS: We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION: These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING: Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.


Assuntos
Tecido Adiposo Branco , Fígado Gorduroso , Obesidade , Oxilipinas , Humanos , Obesidade/metabolismo , Obesidade/complicações , Feminino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Masculino , Oxilipinas/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Pessoa de Meia-Idade , Adulto , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Biomarcadores , Espectrometria de Massas em Tandem
3.
Biochem Pharmacol ; : 116237, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679211

RESUMO

Cytochromes P450 can metabolize endogenous fatty acids, such as arachidonic acid, to bioactive lipids such as epoxyeicosatrienoic acids (EETs) that have beneficial effects. EETs protect hearts against ischemic damage, heart failure or fibrosis; however, their effects are limited by hydrolysis to less active dihydroxy oxylipins by soluble epoxide hydrolase (sEH), encoded by the epoxide hydrolase 2 gene (EPHX2, EC 3.3.2.10). Pharmacological inhibition or genetic disruption of sEH/EPHX2 have been widely studied for their impact on cardiovascular diseases. Less well studied is the role of increased EPHX2 expression, which occurs in a substantial human population that carries the EPHX2 K55R polymorphism or after induction by inflammatory stimuli. Herein, we developed a mouse model with cardiomyocyte-selective expression of human EPHX2 (Myh6-EPHX2) that has significantly increased total EPHX2 expression and activity. Myh6-EPHX2 hearts exhibit strong, cardiomyocyte-selective expression of EPHX2. EPHX2 mRNA, protein, and epoxide hydrolysis measurements suggest that Myh6-EPHX2 hearts have 12-fold increase in epoxide hydrolase activity relative to wild type (WT) hearts. This increased activity significantly decreased epoxide:diol ratios in vivo. Isolated, perfused Myh6-EPHX2 hearts were not significantly different from WT hearts in basal parameters of cardiac function; however, compared to WT hearts, Myh6-EPHX2 hearts demonstrated reduced recovery of heart contractile function after ischemia and reperfusion (I/R). This impaired recovery after I/R correlated with reduced activation of PI3K/AKT and GSK3ß signaling pathways in Myh6-EPHX2 hearts compared to WT hearts. In summary, the Myh6-EPHX2 mouse line represents a novel model of cardiomyocyte-selective overexpression of EPHX2 that has detrimental effects on cardiac function.

4.
J Clin Invest ; 134(9)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483511

RESUMO

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.


Assuntos
Asma , Diferenciação Celular , Linfócitos T Reguladores , Células Th2 , Tromboxano A2 , Animais , Camundongos , Células Th2/imunologia , Células Th2/patologia , Tromboxano A2/metabolismo , Tromboxano A2/imunologia , Linfócitos T Reguladores/imunologia , Asma/imunologia , Asma/patologia , Asma/tratamento farmacológico , Asma/genética , Camundongos Knockout , Interleucina-9/imunologia , Interleucina-9/genética , Interleucina-9/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Pulmão/imunologia , Pulmão/patologia , Ovalbumina/imunologia , Feminino , Linfócitos T Auxiliares-Indutores/imunologia
5.
Toxics ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393201

RESUMO

Perfluorooctanesulfonate (PFOS) is a widespread environmental pollutant with a long half-life and clearly negative outcomes on metabolic diseases such as fatty liver disease and diabetes. Male and female Cyp2b-null and humanized CYP2B6-transgenic (hCYP2B6-Tg) mice were treated with 0, 1, or 10 mg/kg/day PFOS for 21 days, and surprisingly it was found that PFOS was retained at greater concentrations in the serum and liver of hCYP2B6-Tg mice than those of Cyp2b-null mice, with greater differences in the females. Thus, Cyp2b-null and hCYP2B6-Tg mice provide new models for investigating individual mechanisms for PFOS bioaccumulation and toxicity. Overt toxicity was greater in hCYP2B6-Tg mice (especially females) as measured by mortality; however, steatosis occurred more readily in Cyp2b-null mice despite the lower PFOS liver concentrations. Targeted lipidomics and transcriptomics from PFOS-treated Cyp2b-null and hCYP2B6-Tg mouse livers were performed and compared to PFOS retention and serum markers of toxicity using PCA. Several oxylipins, including prostaglandins, thromboxanes, and docosahexaenoic acid metabolites, are associated or inversely associated with PFOS toxicity. Both lipidomics and transcriptomics indicate PFOS toxicity is associated with PPAR activity in all models. GO terms associated with reduced steatosis were sexually dimorphic with lipid metabolism and transport increased in females and circadian rhythm associated genes increased in males. However, we cannot rule out that steatosis was initially protective from PFOS toxicity. Moreover, several transporters are associated with increased retention, probably due to increased uptake. The strongest associations are the organic anion transport proteins (Oatp1a4-6) genes and a long-chain fatty acid transport protein (fatp1), enriched in female hCYP2B6-Tg mice. PFOS uptake was also reduced in cultured murine hepatocytes by OATP inhibitors. The role of OATP1A6 and FATP1 in PFOS transport has not been tested. In summary, Cyp2b-null and hCYP2B6-Tg mice provided unique models for estimating the importance of novel mechanisms in PFOS retention and toxicity.

6.
J Biol Chem ; 299(4): 103049, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822325

RESUMO

Cytochromes P450 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which have numerous effects. After cardiac ischemia, EET-induced coronary vasodilation increases delivery of oxygen/nutrients to the myocardium, and EET-induced signaling protects cardiomyocytes against postischemic mitochondrial damage. Soluble epoxide hydrolase 2 (EPHX2) diminishes the benefits of EETs through hydrolysis to less active dihydroxyeicosatrienoic acids. EPHX2 inhibition or genetic disruption improves recovery of cardiac function after ischemia. Immunohistochemical staining revealed EPHX2 expression in cardiomyocytes and some endothelial cells but little expression in cardiac smooth muscle cells or fibroblasts. To determine specific roles of EPHX2 in cardiac cell types, we generated mice with cell-specific disruption of Ephx2 in endothelial cells (Ephx2fx/fx/Tek-cre) or cardiomyocytes (Ephx2fx/fx/Myh6-cre) to compare to global Ephx2-deficient mice (global Ephx2-/-) and WT (Ephx2fx/fx) mice in expression, EET hydrolase activity, and heart function studies. Most cardiac EPHX2 expression and activity is in cardiomyocytes with substantially less activity in endothelial cells. Ephx2fx/fx/Tek-cre hearts have similar EPHX2 expression, hydrolase activity, and postischemic cardiac function as control Ephx2fx/fx hearts. However, Ephx2fx/fx/Myh6-cre hearts were similar to global Ephx2-/- hearts with significantly diminished EPHX2 expression, decreased hydrolase activity, and enhanced postischemic cardiac function compared to Ephx2fx/fx hearts. During reperfusion, Ephx2fx/fx/Myh6-cre hearts displayed increased ERK activation compared to Ephx2fx/fx hearts, which could be reversed by EEZE treatment. EPHX2 did not regulate coronary vasodilation in this model. We conclude that EPHX2 is primarily expressed in cardiomyocytes where it regulates EET hydrolysis and postischemic cardiac function, whereas endothelial EPHX2 does not play a significant role in these processes.


Assuntos
Miocárdio , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Isquemia/metabolismo , Eicosanoides/metabolismo , Reperfusão , Hidrolases/metabolismo , Epóxido Hidrolases/metabolismo
7.
Antioxidants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942977

RESUMO

NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2-/-) and wild-type (Nrf2+/+) mice neonatally exposed to hyperoxia were infected with RSV. To investigate the prenatal antioxidant effect on neonatal oxidative lung injury, time-pregnant Nrf2-/- and Nrf2+/+ mice were given an oral NRF2 agonist (sulforaphane) on embryonic days 11.5-17.5, and offspring were exposed to hyperoxia. Bronchoalveolar lavage and histopathologic analyses determined lung injury. cDNA microarray analyses were performed on placenta and neonatal lungs. RSV-induced pulmonary inflammation, injury, oxidation, and virus load were heightened in hyperoxia-exposed mice, and injury was more severe in hyperoxia-susceptible Nrf2-/- mice than in Nrf2+/+ mice. Maternal sulforaphane significantly alleviated hyperoxic lung injury in both neonate genotypes with more marked attenuation of severe neutrophilia, edema, oxidation, and alveolarization arrest in Nrf2-/- mice. Prenatal sulforaphane altered different genes with similar defensive functions (e.g., inhibition of cell/perinatal death and inflammation, potentiation of angiogenesis/organ development) in both strains, indicating compensatory transcriptome changes in Nrf2-/- mice. Conclusively, oxidative injury in underdeveloped lungs NRF2-dependently predisposed RSV susceptibility. In utero sulforaphane intervention suggested NRF2-dependent and -independent pulmonary protection mechanisms against early-life oxidant injury.

8.
J Am Assoc Lab Anim Sci ; 60(6): 661-666, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740385

RESUMO

Buprenorphine, an analgesic commonly used in rodent surgery, requires repeated dosing every 4 to 6 h in order to provide adequate analgesia. However, redosing requires repeated handling, which may itself cause stress. Buprenorphine SR-LAB, which reportedly maintains serum levels of buprenorphine greater than 1 ng/mL for 48 to 72 h, is commercially available. However, the viscosity of the product and small dosing volumes make accurate dosing a challenge. Simbadol is a concentrated formulation of buprenorphine hydrochloride labeled for use in cats with recommended dosing frequency of every 24 h. We measured serum concentrations over time after a single injection of this product in C57BL/6NCrl mice and compared it to standard buprenorphine (Buprenex) and Buprenorphine SR-LAB. Male and female mice were injected subcutaneously with one of the 3 buprenorphine formulations at a dose of 1 mg/kg at time 0. Groups of mice (n = 8) were euthanized at 1, 4, 8, 12, 16 h for all groups and 24 h for the Simbadol and the Buprenorphine SR-LAB. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to determine concentrations of buprenorphine in each serum sample. High concentrations were observed in both Simbadol and standard buprenorphine groups one hour after injection (>50 ng/mL). These groups had similar buprenorphine concentration curves, including rates of decline. The standard buprenorphine group had mean concentrations less than 1 ng/mL by 12 h and the Simbadol group by 16 h. In contrast, the Buprenorphine SR-LAB group remained above the 1 ng/mL therapeutic threshold throughout the 24 h. In addition, clinical signs, including increased activity, that lasted for up to an hour after the injection in the Simbadol and standard buprenorphine groups. We conclude that Simbadol does not offer dosing advantages over the standard buprenorphine formulation when given at 1 mg/kg. Buprenorphine SR-LAB maintained a steady concentration of buprenorphine above 1 ng/mL for at least 24 h, and as such is a superior choice for providing long-term analgesia.


Assuntos
Buprenorfina , Analgésicos Opioides , Animais , Gatos , Cromatografia Líquida , Feminino , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
9.
Environ Int ; 157: 106787, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34314981

RESUMO

BACKGROUND: Exposure to consumer product chemicals during pregnancy may increase susceptibility to pregnancy disorders by influencing maternal inflammation. However, effects on specific inflammatory pathways have not been well characterized. Oxylipins are a diverse class of lipids that act as important mediators and biomarkers of several biological pathways that regulate inflammation. Adverse pregnancy outcomes have been associated with circulating oxylipin levels in pregnancy. In this study, we aimed to determine the longitudinal associations between plasma oxylipins and urinary biomarkers of three classes of consumer product chemicals among pregnant women. METHODS: Data come from a study of 90 pregnant women nested within the LIFECODES cohort. Maternal plasma and urine were collected at three prenatal visits. Plasma was analyzed for 61 oxylipins, which were grouped according to biosynthetic pathways that we defined by upstream: 1) fatty acid precursor, including linoleic, arachidonic, docosahexaenoic, or eicosapentaenoic acid; and 2) enzyme pathway, including cyclooxygenase (COX), lipoxygenase (LOX), or cytochrome P450 (CYP). Urine was analyzed for 12 phenol, 12 phthalate, and 9 organophosphate ester (OPE) biomarkers. Linear mixed effect models were used for single-pollutant analyses. We implemented a novel extension of quantile g-computation for longitudinal data to examine the joint effect of class-specific chemical mixtures on individual plasma oxylipin concentrations. RESULTS: We found that urinary biomarkers of consumer product chemicals were positively associated with pro-inflammatory oxylipins from several biosynthetic pathways. Importantly, these associations depended upon the chemical class of exposure biomarker. We estimated positive associations between urinary phenol biomarkers and oxylipins produced from arachidonic acid by LOX enzymes, including several important pro-inflammatory hydroxyeicosatetraenoic acids (HETEs). On average, mean concentrations of oxylipin produced from the arachidonic acid/LOX pathway were 48%-71% higher per quartile increase in the phenol biomarker mixture. For example, a simultaneous quartile increase in all urinary phenols was associated with 53% higher (95% confidence interval [CI]: 11%, 111%) concentrations of 12-HETE. The positive associations among phenols were primarily driven by methyl paraben, 2,5-dichlorophenol, and triclosan. Additionally, we observed that phthalate and OPE metabolites were associated with higher concentrations of oxylipins produced from linoleic acid by CYP enzymes, including the pro-inflammatory dihydroxy-octadecenoic acids (DiHOMEs). Associations among DiHOME oxylipins were driven by metabolites of benzylbutyl and di-isodecyl phthalate, and by the metabolite of tris(1,3-dichloro-2-propyl) phosphate among OPEs. We also observed inverse associations between phthalate and OPE metabolites and oxylipins produced from other pathways; however, adjusting for a plasma indicator of dietary fatty acid intake attenuated those results. CONCLUSIONS: Our findings support the hypothesis that consumer product chemicals may have diverse impacts on inflammation processes in pregnancy. Certain pro-inflammatory oxylipins were generally higher among participants with higher urinary chemical biomarker concentrations. Associations varied by class of chemical and by the biosynthetic pathway of oxylipin production, indicating potential specificity in the inflammatory effects of these environmental chemicals during pregnancy that warrant investigation in larger studies.


Assuntos
Oxilipinas , Gestantes , Estudos de Coortes , Feminino , Humanos , Fenóis , Gravidez , Resultado da Gravidez
10.
J Biol Chem ; 296: 100198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334892

RESUMO

The mammalian epoxide hydrolase (EPHX)3 is known from in vitro experiments to efficiently hydrolyze the linoleate epoxides 9,10-epoxyoctadecamonoenoic acid (EpOME) and epoxyalcohol 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoate to corresponding diols and triols, respectively. Herein we examined the physiological relevance of EPHX3 to hydrolysis of both substrates in vivo. Ephx3-/- mice show no deficiency in EpOME-derived plasma diols, discounting a role for EPHX3 in their formation, whereas epoxyalcohol-derived triols esterified in acylceramides of the epidermal 12R-lipoxygenase pathway are reduced. Although the Ephx3-/- pups appear normal, measurements of transepidermal water loss detected a modest and statistically significant increase compared with the wild-type or heterozygote mice, reflecting a skin barrier impairment that was not evident in the knockouts of mouse microsomal (EPHX1/microsomal epoxide hydrolase) or soluble (EPHX2/sEH). This barrier phenotype in the Ephx3-/- pups was associated with a significant decrease in the covalently bound ceramides in the epidermis (40% reduction, p < 0.05), indicating a corresponding structural impairment in the integrity of the water barrier. Quantitative LC-MS analysis of the esterified linoleate-derived triols in the murine epidermis revealed a marked and isomer-specific reduction (∼85%) in the Ephx3-/- epidermis of the major trihydroxy isomer 9R,10S,13R-trihydroxy-11E-octadecenoate. We conclude that EPHX3 (and not EPHX1 or EPHX2) catalyzes hydrolysis of the 12R-LOX/eLOX3-derived epoxyalcohol esterified in acylceramide and may function to control flux through the alternative and crucial route of metabolism via the dehydrogenation pathway of SDR9C7. Importantly, our findings also identify a functional role for EPHX3 in transformation of a naturally esterified epoxide substrate, pointing to its potential contribution in other tissues.


Assuntos
Ceramidas/metabolismo , Compostos de Epóxi/metabolismo , Ácido Linoleico/metabolismo , Pele/metabolismo , Animais , Deleção de Genes , Hidrólise , Camundongos , Permeabilidade
11.
PLoS Med ; 17(8): e1003271, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797061

RESUMO

BACKGROUND: Inflammation during pregnancy is hypothesized to influence fetal growth. Eicosanoids, an important class of lipid mediators derived from polyunsaturated fatty acids, can act as both direct influences and biomarkers of inflammation through a variety of biological pathways. However, quantifying these distinct inflammatory pathways has proven difficult. We aimed to characterize a comprehensive panel of plasma eicosanoids longitudinally across gestation in pregnant women and to determine whether levels differed by infant size at delivery. METHODS AND FINDINGS: Our data come from a case-control study of 90 pregnant women nested within the LIFECODES prospective birth cohort study conducted at Brigham and Women's Hospital in Boston, Massachusetts. This study included 31 women who delivered small for gestational age (SGA) babies (SGA, ≤10th percentile), 28 who delivered large for gestational age (LGA) babies (≥90th percentile), and 31 who delivered appropriate for gestational age (AGA) babies (controls, >10th to <90th percentile). All deliveries occurred between 2010 and 2017. Most participants were in their early 30s (median age: 33 years), of white (60%) or black (20%) race/ethnicity, and of normal pre-pregnancy BMI (median BMI: 23.5 kg/m2). Women provided non-fasting plasma samples during 3 prenatal study visits (at median 11, 25, and 35 weeks gestation) and were analyzed for a panel of eicosanoids. Eicosanoids were grouped by biosynthetic pathway, defined by (1) the fatty acid precursor, including linoleic acid (LA), arachidonic acid (AA), docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA), and (2) the enzyme group, including cyclooxygenase (COX), lipoxygenase (LOX), or cytochrome P450 (CYP). Additionally, the concentrations of the 4 fatty acids (LA, AA, DHA, and EPA) were measured in maternal plasma. Analytes represent lipids from non-esterified plasma. We examined correlations among eicosanoids and trajectories across pregnancy. Differences in longitudinal concentrations between case groups were examined using Bayesian linear mixed effects models, which included participant-specific random intercepts and penalized splines on gestational age. Results showed maternal plasma levels of eicosanoids and fatty acids generally followed U-shaped curve patterns across gestation. Bayesian models showed that associations between eicosanoids and case status varied by biosynthetic pathway. Eicosanoids derived from AA via the CYP and LOX biosynthetic pathways were positively associated with SGA. The adjusted mean concentration of 12-HETE, a LOX pathway product, was 56.2% higher (95% credible interval 6.6%, 119.1%) among SGA cases compared to AGA controls. Eicosanoid associations with LGA were mostly null, but negative associations were observed with eicosanoids derived from AA by LOX enzymes. The fatty acid precursors had estimated mean concentrations 41%-97% higher among SGA cases and 33%-39% lower among LGA cases compared to controls. Primary limitations of the study included the inability to explore the potential periods of susceptibility of eicosanoids on infant size due to limited sample size, along with the use of infant size at delivery instead of longitudinal ultrasound measures to estimate fetal growth. CONCLUSIONS: In this nested case-control study, we found that eicosanoids and fatty acids systematically change in maternal plasma over pregnancy. Eicosanoids from specific inflammation-related pathways were higher in mothers of SGA cases and mostly similar in mothers of LGA cases compared to controls. These findings can provide deeper insight into etiologic mechanisms of abnormal fetal growth outcomes.


Assuntos
Peso ao Nascer/fisiologia , Eicosanoides/sangue , Idade Gestacional , Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Gravidez/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Estudos Prospectivos
12.
FASEB J ; 34(8): 10027-10040, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592197

RESUMO

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Assuntos
Aspirina/farmacologia , Plaquetas/metabolismo , Ciclo-Oxigenase 1/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Eicosanoides/metabolismo , Proteínas de Membrana/fisiologia , Trombose/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Plaquetas/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/tratamento farmacológico , Trombose/patologia
13.
Cells ; 9(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365470

RESUMO

A number of oxylipins have been described as endogenous PPAR ligands. The very short biological half-lives of oxylipins suggest roles as autocrine or paracrine signaling molecules. While coronary arterial atherosclerosis is the root of myocardial infarction, aortic atherosclerotic plaque formation is a common readout of in vivo atherosclerosis studies in mice. Improved understanding of the compartmentalized sources of oxylipin PPAR ligands will increase our knowledge of the roles of PPAR signaling in diverse vascular tissues. Here, we performed a targeted lipidomic analysis of ex vivo-generated oxylipins from porcine aorta, coronary artery, pulmonary artery and perivascular adipose. Cyclooxygenase (COX)-derived prostanoids were the most abundant detectable oxylipin from all tissues. By contrast, the coronary artery produced significantly higher levels of oxylipins from CYP450 pathways than other tissues. The TLR4 ligand LPS induced prostanoid formation in all vascular tissue tested. The 11-HETE, 15-HETE, and 9-HODE were also induced by LPS from the aorta and pulmonary artery but not coronary artery. Epoxy fatty acid (EpFA) formation was largely unaffected by LPS. The pig CYP2J homologue CYP2J34 was expressed in porcine vascular tissue and primary coronary artery smooth muscle cells (pCASMCs) in culture. Treatment of pCASMCs with LPS induced a robust profile of pro-inflammatory target genes: TNFα, ICAM-1, VCAM-1, MCP-1 and CD40L. The soluble epoxide hydrolase inhibitor TPPU, which prevents the breakdown of endogenous CYP-derived EpFAs, significantly suppressed LPS-induced inflammatory target genes. In conclusion, PPAR-activating oxylipins are produced and regulated in a vascular site-specific manner. The CYP450 pathway is highly active in the coronary artery and capable of providing anti-inflammatory oxylipins that prevent processes of inflammatory vascular disease progression.


Assuntos
Vasos Coronários/efeitos dos fármacos , Ácidos Graxos/farmacologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Vasos Coronários/metabolismo , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Ligantes , Lipidômica/métodos , Lipopolissacarídeos/farmacologia , Miócitos de Músculo Liso/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Suínos
14.
Cell Metab ; 31(3): 564-579.e7, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130883

RESUMO

Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in metabolism, DNA repair, and aging. However, how NAD metabolism is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer resistance to inhibitors of NAMPT, the rate-limiting enzyme in the amidated NAD salvage pathway, in cancer cells and xenograft tumors. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. Using stable isotope tracing and microbiota-depleted mice, we demonstrate that this bacteria-mediated deamidation contributes substantially to the NAD-boosting effect of oral nicotinamide and nicotinamide riboside supplementation in several tissues. Collectively, our findings reveal an important role of bacteria-enabled deamidated pathway in host NAD metabolism.


Assuntos
Amidas/metabolismo , Vias Biossintéticas , Mamíferos/microbiologia , Mycoplasma/fisiologia , NAD/metabolismo , Administração Oral , Animais , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Metabolismo Energético , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamidase/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Mononucleotídeo de Nicotinamida/química , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio/metabolismo
15.
FASEB J ; 33(12): 14784-14797, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690125

RESUMO

Inflammatory stimuli, such as bacterial LPS, alter the expression of many cytochromes P450. CYP2C and CYP2J subfamily members actively metabolize fatty acids to bioactive eicosanoids, which exhibit potent anti-inflammatory effects. Herein, we examined mRNA levels of the 15 mouse Cyp2c and 7 mouse Cyp2j isoforms in liver, kidney, duodenum, and brain over a 96-h time course of LPS-induced inflammation and resolution. Plasma and liver eicosanoid levels were also measured by liquid chromatography with tandem mass spectrometry. Expression changes in Cyp2c and Cyp2j isoforms were both isoform and tissue specific. Total liver Cyp2c and Cyp2j mRNA content was reduced by 80% 24 h after LPS but recovered to baseline levels by 96 h. Total Cyp2c and Cyp2j mRNA in kidney (-19%) and duodenum (-64%) were reduced 24 h after LPS but recovered above baseline by 72 h. Total Cyp2c and Cyp2j mRNA content in brain was elevated at all time points after LPS dosing. Plasma eicosanoids transiently increased 3-6 h after administration of LPS. In liver, esterified oxylipin levels decreased during acute inflammation and before recovering. The biphasic suppression and recovery of mouse Cyp2c and Cyp2j isoforms and associated changes in eicosanoid levels during LPS-induced inflammation and resolution may have important physiologic consequences.-Graves, J. P., Bradbury, J. A., Gruzdev, A., Li, H., Duval, C., Lih, F. B., Edin, M. L., Zeldin, D. C. Expression of Cyp2c/Cyp2j subfamily members and oxylipin levels during LPS-induced inflammation and resolution in mice.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Lipopolissacarídeos/toxicidade , Oxilipinas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Eicosanoides/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Cancer Epidemiol Biomarkers Prev ; 28(1): 189-197, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30262599

RESUMO

BACKGROUND: Evidence suggests that inflammation increases risk for ovarian cancer. Aspirin has been shown to decrease ovarian cancer risk, though the mechanism is unknown. Studies of inflammatory markers, lipid molecules such as arachidonic acid, linoleic acid, and alpha-linoleic acid metabolites, and development of ovarian cancer are essential to understand the potential mechanisms. METHODS: We conducted a nested case-control study (157 cases/156 matched controls) within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Unconditional logistic regression was used to estimate the association between prediagnostic serum levels of 31 arachidonic acid/linoleic acid/alpha-linoleic acid metabolites and risk of ovarian cancer. RESULTS: Five of the 31 arachidonic acid/linoleic acid/alpha-linoleic acid (free fatty acids) metabolites were positively associated with ovarian cancer risk: 8-HETE [tertile 3 vs. 1: OR 2.53 (95% confidence interval [CI] 1.18-5.39), P trend 0.02], 12,13-DHOME [2.49 (1.29-4.81), 0.01], 13-HODE [2.47 (1.32-4.60), 0.005], 9-HODE [1.97 (1.06-3.68), 0.03], 9,12,13-THOME [2.25 (1.20-4.21), 0.01]. In analyses by subtype, heterogeneity was suggested for 8-HETE [serous OR (95% CI): 2.53 (1.18-5.39) vs. nonserous OR (95% CI): 1.15 (0.56-2.36), P het 0.1] and 12,13-EpOME [1.95 (0.90-4.22) vs. 0.82 (0.39-1.73), 0.05]. CONCLUSIONS: Women with increased levels of five fatty acid metabolites (8-HETE, 12,13-DHOME, 13-HODE, 9-HODE, and 9,12,13-THOME) were at increased risk of developing ovarian cancer in the ensuing decade. All five metabolites are derived from either arachidonic acid (8-HETE) or linoleic acid (12,13-DHOME, 13-HODE, 9-HODE, 9,12,13-THOME) via metabolism through the LOX/cytochrome P450 pathway. IMPACT: The identification of these risk-related fatty acid metabolites provides mechanistic insights into the etiology of ovarian cancer and indicates the direction for future research.


Assuntos
Ácidos Araquidônicos/sangue , Biomarcadores Tumorais/sangue , Ácidos Linoleicos/sangue , Neoplasias Ovarianas/sangue , Idoso , Ácidos Araquidônicos/metabolismo , Estudos de Casos e Controles , Detecção Precoce de Câncer , Feminino , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Inflamação , Ácidos Linoleicos/metabolismo , Modelos Logísticos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo
18.
J Allergy Clin Immunol Pract ; 7(5): 1580-1588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580047

RESUMO

BACKGROUND: Nasal polyps influence the burden of aspirin-exacerbated respiratory disease (AERD) by contributing to eicosanoid production. AERD is diagnosed through graded aspirin challenges. It is not known how sinus surgery affects aspirin challenge outcomes. OBJECTIVE: To investigate the effects of endoscopic sinus surgery (ESS) on aspirin-induced reaction severity and on the levels of eicosanoids associated with these reactions. METHODS: Twenty-eight patients with AERD were challenged with aspirin before and 3 to 4 weeks after ESS. Respiratory parameters and plasma and urine levels of eicosanoids were compared before and after challenges. RESULTS: Before ESS, AERD diagnosis was confirmed in all study patients by aspirin challenges that resulted in hypersensitivity reactions. After ESS, reactions to aspirin were less severe in all patients and 12 of 28 patients (43%, P < .001) had no detectable reaction. A lack of clinical reaction to aspirin was associated with lower peripheral blood eosinophilia (0.1 K/µL [interquartile range (IQR) 0.1-0.3] vs 0.4 K/µL [IQR 0.2-0.8]; P = .006), lower urinary leukotriene E4 levels after aspirin challenge (98 pg/mg creatinine [IQR 61-239] vs 459 pg/mg creatinine [IQR 141-1344]; P = .02), and lower plasma prostaglandin D2 to prostaglandin E2 ratio (0 [±0] vs 0.43 [±0.2]; P = .03), compared with those who reacted. CONCLUSIONS: Sinus surgery results in decreased aspirin sensitivity and a decrease in several plasma and urine eicosanoid levels in patients with AERD. Diagnostic aspirin challenges should be offered to patients with suspected AERD before ESS to increase diagnostic accuracy. Patients with established AERD could undergo aspirin desensitizations after ESS as the severity of their aspirin-induced hypersensitivity reactions lessens.


Assuntos
Asma Induzida por Aspirina , Endoscopia , Procedimentos Cirúrgicos Nasais , Adulto , Aspirina/efeitos adversos , Asma Induzida por Aspirina/sangue , Asma Induzida por Aspirina/metabolismo , Asma Induzida por Aspirina/fisiopatologia , Asma Induzida por Aspirina/urina , Eicosanoides/sangue , Eicosanoides/urina , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Seios Paranasais , Índice de Gravidade de Doença
19.
J Biol Chem ; 293(9): 3281-3292, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298899

RESUMO

Stimuli such as inflammation or hypoxia induce cytochrome P450 epoxygenase-mediated production of arachidonic acid-derived epoxyeicosatrienoic acids (EETs). EETs have cardioprotective, vasodilatory, angiogenic, anti-inflammatory, and analgesic effects, which are diminished by EET hydrolysis yielding biologically less active dihydroxyeicosatrienoic acids (DHETs). Previous in vitro assays have suggested that epoxide hydrolase 2 (EPHX2) is responsible for nearly all EET hydrolysis. EPHX1, which exhibits slow EET hydrolysis in vitro, is thought to contribute only marginally to EET hydrolysis. Using Ephx1-/-, Ephx2-/-, and Ephx1-/-Ephx2-/- mice, we show here that EPHX1 significantly contributes to EET hydrolysis in vivo Disruption of Ephx1 and/or Ephx2 genes did not induce compensatory changes in expression of other Ephx genes or CYP2 family epoxygenases. Plasma levels of 8,9-, 11,12-, and 14,15-DHET were reduced by 38, 44, and 67% in Ephx2-/- mice compared with wildtype (WT) mice, respectively; however, plasma from Ephx1-/-Ephx2-/- mice exhibited significantly greater reduction (100, 99, and 96%) of those respective DHETs. Kinetic assays and FRET experiments indicated that EPHX1 is a slow EET scavenger, but hydrolyzes EETs in a coupled reaction with cytochrome P450 to limit basal EET levels. Moreover, we also found that EPHX1 activities are biologically relevant, as Ephx1-/-Ephx2-/- hearts had significantly better postischemic functional recovery (71%) than both WT (31%) and Ephx2-/- (51%) hearts. These findings indicate that Ephx1-/-Ephx2-/- mice are a valuable model for assessing EET-mediated effects, uncover a new paradigm for EET metabolism, and suggest that dual EPHX1 and EPHX2 inhibition may represent a therapeutic approach to manage human pathologies such as myocardial infarction.


Assuntos
Eicosanoides/metabolismo , Epóxido Hidrolases/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Animais , Epóxido Hidrolases/química , Epóxido Hidrolases/deficiência , Hidrólise , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Isquemia Miocárdica/patologia , Miocárdio/patologia , Oxilipinas/sangue , Conformação Proteica
20.
Genome Biol ; 19(1): 7, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29361968

RESUMO

BACKGROUND: The gut microbiome, a key constituent of the colonic environment, has been implicated as an important modulator of human health. The eukaryotic epigenome is postulated to respond to environmental stimuli through alterations in chromatin features and, ultimately, gene expression. How the host mediates epigenomic responses to gut microbiota is an emerging area of interest. Here, we profile the gut microbiome and chromatin characteristics in colon epithelium from mice fed either an obesogenic or control diet, followed by an analysis of the resultant changes in gene expression. RESULTS: The obesogenic diet shapes the microbiome prior to the development of obesity, leading to altered bacterial metabolite production which predisposes the host to obesity. This microbiota-diet interaction leads to changes in histone modification at active enhancers that are enriched for binding sites for signal responsive transcription factors. These alterations of histone methylation and acetylation are associated with signaling pathways integral to the development of colon cancer. The transplantation of obesogenic diet-conditioned microbiota into germ free mice, combined with an obesogenic diet, recapitulates the features of the long-term diet regimen. The diet/microbiome-dependent changes are reflected in both the composition of the recipient animals' microbiome as well as in the set of transcription factor motifs identified at diet-influenced enhancers. CONCLUSIONS: These findings suggest that the gut microbiome, under specific dietary exposures, stimulates a reprogramming of the enhancer landscape in the colon, with downstream effects on transcription factors. These chromatin changes may be associated with those seen during colon cancer development.


Assuntos
Colo/metabolismo , Epigênese Genética , Microbioma Gastrointestinal/genética , Obesidade/microbiologia , Animais , Dieta , Elementos Facilitadores Genéticos , Epitélio/metabolismo , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Fenótipo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...