Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 30(4): 1013-1022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538867

RESUMO

Therapeutic vaccines that elicit cytotoxic T cell responses targeting tumor-specific neoantigens hold promise for providing long-term clinical benefit to patients with cancer. Here we evaluated safety and tolerability of a therapeutic vaccine encoding 20 shared neoantigens derived from selected common oncogenic driver mutations as primary endpoints in an ongoing phase 1/2 study in patients with advanced/metastatic solid tumors. Secondary endpoints included immunogenicity, overall response rate, progression-free survival and overall survival. Eligible patients were selected if their tumors expressed one of the human leukocyte antigen-matched tumor mutations included in the vaccine, with the majority of patients (18/19) harboring a mutation in KRAS. The vaccine regimen, consisting of a chimp adenovirus (ChAd68) and self-amplifying mRNA (samRNA) in combination with the immune checkpoint inhibitors ipilimumab and nivolumab, was shown to be well tolerated, with observed treatment-related adverse events consistent with acute inflammation expected with viral vector-based vaccines and immune checkpoint blockade, the majority grade 1/2. Two patients experienced grade 3/4 serious treatment-related adverse events that were also dose-limiting toxicities. The overall response rate was 0%, and median progression-free survival and overall survival were 1.9 months and 7.9 months, respectively. T cell responses were biased toward human leukocyte antigen-matched TP53 neoantigens encoded in the vaccine relative to KRAS neoantigens expressed by the patients' tumors, indicating a previously unknown hierarchy of neoantigen immunodominance that may impact the therapeutic efficacy of multiepitope shared neoantigen vaccines. These data led to the development of an optimized vaccine exclusively targeting KRAS-derived neoantigens that is being evaluated in a subset of patients in phase 2 of the clinical study. ClinicalTrials.gov registration: NCT03953235 .


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Humanos , Antígenos de Neoplasias , Vacinas Anticâncer/efeitos adversos , Antígenos HLA , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Vacinas/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-37928883

RESUMO

Glutamate (Glu) is an excitatory neurotransmitter that plays a critical role in memory. Brain mapping activities of such pathways relied heavily on the ability to release Glu with spatiotemporal precision. Several photo-protecting groups (PPGs), referred to as photocages or cages, were designed to accomplish the release of Glu upon irradiation. Previously reported Glu cages responded to UV upon irradiation with single photons, which limited their use in vivo experiments due to cytotoxicity. Other caged designs suffered from lower quantum efficiency (QE) of release necessitating higher concentrations and/or longer photoirradiation times. There have been limited examples of cages that respond to visible light with single photon irradiation. Herein, we report the efficient preparation of 11 caged Glu examples that respond to two visible wavelengths, 467 nm (thiocoumarin based) and 515-540 nm (BODIPY based). The kinetics of photouncaging were studied for all caged designs, and we report all quantum efficiencies, i.e., quantum yields (Φ), that ranged from 0.0001-0.65. Two of the BODIPY cages are reported here for the first time, and one, Me-BODIPY-Br-Glu, shows the most efficient Glu release with a QE of 0.65. Similar caged designs can be extended to the inhibitory neurotransmitter, GABA. This would enable the use of two visible wavelengths to modulate the release of excitatory and inhibitory neurotransmitters upon demand via optical control.

3.
NPJ Regen Med ; 6(1): 85, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930951

RESUMO

Biomaterial-based cell replacement approaches to regenerative medicine are emerging as promising treatments for a wide array of profound clinical problems. Here we report an interpenetrating polymer network (IPN) composed of gelatin-hydroxyphenyl propionic acid and hyaluronic acid tyramine that is able to enhance intravitreal retinal cell therapy. By tuning our bioinspired hydrogel to mimic the vitreous chemical composition and mechanical characteristics we were able to improve in vitro and in vivo viability of human retinal ganglion cells (hRGC) incorporated into the IPN. In vivo vitreal injections of cell-bearing IPN in rats showed extensive attachment to the inner limiting membrane of the retina, improving with hydrogels stiffness. Engrafted hRGC displayed signs of regenerating processes along the optic nerve. Of note was the decrease in the immune cell response to hRGC delivered in the gel. The findings compel further translation of the gelatin-hyaluronic acid IPN for intravitreal cell therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...