Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 86(2): 125-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340164

RESUMO

Peatlands are found on all continents, covering 3% of the global land area. However, the spatial extent and causes of metal enrichment in peatlands is understudied and no attempt has been made to evaluate global patterns of metal enrichment in bog and fen peatlands, despite that certain metals and rare earth elements (REE) arise from anthropogenic sources. We analyzed 368 peat cores sampled in 16 countries across five continents and measured metal and other element concentrations at three depths down to 70 cm as well as estimated cumulative atmospheric S deposition (1850-2009) for each site. Sites were assigned to one of three distinct broadly recognized peatland categories (bog, poor fen, and intermediate-to-moderately rich fen) that varied primarily along a pH gradient. Metal concentrations differed among peatland types, with intermediate-to-moderately rich fens demonstrating the highest concentrations of most metals. Median enrichment factors (EFs; a metric comparing natural and anthropogenic metal deposition) for individual metals were similar among bogs and fens (all groups), with metals likely to be influenced by anthropogenic sources (As, Cd, Co, Cu, Hg, Pb, and Sb) demonstrating median enrichment factors (EFs) > 1.5. Additionally, mean EFs were substantially higher than median values, and the positive correlation (< 0.40) with estimated cumulative atmospheric S deposition, confirmed some level of anthropogenic influence of all pollutant metals except for Hg that was unrelated to S deposition. Contrary to expectations, high EFs were not restricted to pollutant metals, with Mn, K and Rb all exhibiting elevated median EFs that were in the same range as pollutant metals likely due to peatland biogeochemical processes leading to enrichment of these nutrients in surface soil horizons. The global patterns of metal enrichment in bogs and fens identified in this study underscore the importance of these peatlands as environmental archives of metal deposition, but also illustrates that biogeochemical processes can enrich metals in surface peat and EFs alone do not necessarily indicate atmospheric contamination.


Assuntos
Poluentes Ambientais , Mercúrio , Áreas Alagadas , Metais , Mercúrio/análise , Solo
2.
New Phytol ; 240(1): 412-425, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37148190

RESUMO

Drainage-induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role. We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested). Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza at c. 120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genus Cortinarius dominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together with Mycena) was positively associated with peat humification and negatively with carbon-to-nitrogen ratio. Our study is consistent with a plant-soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long-term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon-rich soils globally.


Assuntos
Micorrizas , Micorrizas/fisiologia , Árvores , Solo , Plantas , Carbono , Microbiologia do Solo
3.
Front Plant Sci ; 14: 1048609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180385

RESUMO

Although wetlands contain a disproportionately high amount of earth's total soil carbon, many regions are still poorly mapped and with unquantified carbon stocks. The tropical Andes contain a high concentration of wetlands consisting mostly of wet meadows and peatlands, yet their total organic carbon stocks are poorly quantified, as well as the carbon fraction that wet meadows store compared to peatlands. Therefore, our goal was to quantify how soil carbon stocks vary between wet meadows and peatlands for a previously mapped Andean region, Huascarán National Park, Peru. Our secondary goal was to test a rapid peat sampling protocol to facilitate field sampling in remote areas. We sampled soil to calculate carbon stocks of four wetland types: cushion peat, graminoid peat, cushion wet meadow, and graminoid wet meadow. Soil sampling was conducted by using a stratified randomized sampling scheme. Wet meadows were sampled to the mineral boundary using a gouge auger, and we used a combination of full peat cores and a rapid peat sampling procedure to estimate peat carbon stocks. In the lab, soils were processed for bulk density and carbon content, and total carbon stock of each core was calculated. We sampled 63 wet meadows and 42 peatlands. On a per hectare basis, carbon stocks varied strongly between peatlands (avg. 1092 MgC ha-1) and wet meadows (avg. 30 MgC ha-1). Overall, wetlands in Huascarán National Park contain 24.4 Tg of carbon with peatlands storing 97% of the total wetland carbon and wet meadows accounting for 3% of the wetland carbon in the park. In addition, our results show that rapid peat sampling can be an effective method for sampling carbon stocks in peatlands. These data are important for countries developing land use and climate change policies as well as providing a rapid assessment method for wetland carbon stock monitoring programs.

4.
Glob Chang Biol ; 29(3): 780-793, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308039

RESUMO

A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14 C and δ13 C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14 C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.


Assuntos
Ecossistema , Água Subterrânea , Dióxido de Carbono/análise , Carbono , Plantas , Solo
5.
Microb Ecol ; 85(3): 875-891, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35867139

RESUMO

Peatland ecosystems cover only 3% of the world's land area; however, they store one-third of the global soil carbon (C). Microbial communities are the main drivers of C decomposition in peatlands, yet we have limited knowledge of their structure and function. While the microbial communities in the Northern Hemisphere peatlands are well documented, we have limited understanding of microbial community composition and function in the Southern Hemisphere peatlands, especially in Australia. We investigated the vertical stratification of prokaryote and fungal communities from Wellington Plains peatland in the Australian Alps. Within the peatland complex, bog peat was sampled from the intact peatland and dried peat from the degraded peatland along a vertical soil depth gradient (i.e., acrotelm, mesotelm, and catotelm). We analyzed the prokaryote and fungal community structure, predicted functional profiles of prokaryotes using PICRUSt, and assigned soil fungal guilds using FUNGuild. We found that the structure and function of prokaryotes were vertically stratified in the intact bog. Soil carbon, manganese, nitrogen, lead, and sodium content best explained the prokaryote composition. Prokaryote richness was significantly higher in the intact bog acrotelm compared to degraded bog acrotelm. Fungal composition remained similar across the soil depth gradient; however, there was a considerable increase in saprotroph abundance and decrease in endophyte abundance along the vertical soil depth gradient. The abundance of saprotrophs and plant pathogens was two-fold higher in the degraded bog acrotelm. Soil manganese and nitrogen content, electrical conductivity, and water table level (cm) best explained the fungal composition. Our results demonstrate that both fungal and prokaryote communities are shaped by soil abiotic factors and that peatland degradation reduces microbial richness and alters microbial functions. Thus, current and future changes to the environmental conditions in these peatlands may lead to altered microbial community structures and associated functions which may have implications for broader ecosystem function changes in peatlands.


Assuntos
Ecossistema , Microbiota , Austrália , Carbono/metabolismo , Manganês , Nitrogênio/análise , Solo/química , Microbiologia do Solo
6.
PLoS One ; 17(11): e0275149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417456

RESUMO

Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Áreas Alagadas , Nitrogênio
7.
Mycorrhiza ; 32(1): 67-81, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35034180

RESUMO

Many trees depend on symbiotic ectomycorrhizal fungi for nutrients in exchange for photosynthetically derived carbohydrates. Trees growing in peatlands, which cover 3% of the earth's terrestrial surface area yet hold approximately one-third of organic soil carbon stocks, may benefit from ectomycorrhizal fungi that can efficiently forage for nutrients and degrade organic matter using oxidative enzymes such as class II peroxidases. However, such traits may place a higher carbon cost on both the fungi and host tree. To investigate these trade-offs that might structure peatland ectomycorrhizal fungal communities, we sampled black spruce (Picea mariana (Mill.)) seedlings along 100-year-old peatland drainage gradients in Minnesota, USA, that had resulted in higher soil nitrogen and canopy density. Structural equation models revealed that the relative abundance of the dominant ectomycorrhizal fungal genus, Cortinarius, which is known for relatively high fungal biomass coupled with elevated class II peroxidase potential, was negatively linked to site fertility but more positively affected by recent host stem radial growth, suggesting carbon limitation. In contrast, Cenococcum, known for comparatively lower fungal biomass and less class II peroxidase potential, was negatively linked to host stem radial growth and unrelated to site fertility. Like Cortinarius, the estimated relative abundance of class II peroxidase genes in the ectomycorrhizal community was more related to host stem radial growth than site fertility. Our findings indicate a trade-off between symbiont foraging traits and associated carbon costs that consequently structure seedling ectomycorrhizal fungal communities in peatlands.


Assuntos
Micobioma , Micorrizas , Picea , Plântula , Solo , Microbiologia do Solo , Árvores
8.
FEMS Microbiol Lett ; 368(21-24)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875049

RESUMO

Peatlands both accumulate carbon and release methane, but their broad range in environmental conditions means that the diversity of microorganisms responsible for carbon cycling is still uncertain. Here, we describe a community analysis of methanogenic archaea responsible for methane production in 17 peatlands from 36 to 53 N latitude across the eastern half of North America, including three metal-contaminated sites. Methanogenic community structure was analysed through Illumina amplicon sequencing of the mcrA gene. Whether metal-contaminated sites were included or not, metal concentrations in peat were a primary driver of methanogenic community composition, particularly nickel, a trace element required in the F430 cofactor in methyl-coenzyme M reductase that is also toxic at high concentrations. Copper was also a strong predictor, likely due to inhibition at toxic levels and/or to cooccurrence with nickel, since copper enzymes are not known to be present in anaerobic archaea. The methanogenic groups Methanocellales and Methanosarcinales were prevalent in peatlands with low nickel concentrations, while Methanomicrobiales and Methanomassiliicoccales were abundant in peatlands with higher nickel concentrations. Results suggest that peat-associated trace metals are predictors of methanogenic communities in peatlands.


Assuntos
Archaea , Cobre , Microbiota , Níquel , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Carbono , Cobre/toxicidade , Ecossistema , Metano/metabolismo , Microbiota/efeitos dos fármacos , Níquel/toxicidade , América do Norte , Filogenia , Solo/química , Microbiologia do Solo
9.
Mol Ecol ; 30(20): 5119-5136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402116

RESUMO

Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.


Assuntos
Microbiota , Microbiologia do Solo , Archaea/genética , Secas , Microbiota/genética , Solo
10.
J Environ Manage ; 296: 113090, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34256296

RESUMO

Peatlands play a critical role in terrestrial carbon (C) storage, containing an estimated 30% of global soil C, despite occupying only 3% of global land area. Historic management of peatlands has led to widespread degradation and loss of important ecosystem services, including C sequestration. Legacy drainage features in the peatlands of northern Minnesota, USA were studied to assess the volume of peat and the amount of C lost in the ~100 years since drainage. Using high-resolution Light Detection and Ranging (LiDAR) data, we measured elevation changes adjacent to legacy ditches to model pre-ditch surface elevations, which were used to calculate peat volume loss. We established relationships between volume loss and site characteristics from existing geographic information systems datasets and used those relationships to scale volume loss to all mapped peatland ditches in northern Minnesota (USA). We estimated that 0.165 ± 0.009 km3 of peat have been lost along almost 4000 km of peatland ditches. Peat loss upslope of ditches was significantly less than downslope (P < 0.001). Mean width of the entire ditch-effect zone was 333 ± 8.32 m. Using our volume loss estimates, literature estimates of oxidation, and mean bulk density and peat C% values from Minnesota peatlands, we calculate a total historic loss 3.847 ± 0.364 Tg C. Assuming a constant oxidation rate during the 100 years since drainage, euic and dysic peatlands within the ditch effect zone have lost 0.26 ± 0.08 and 0.40 ± 0.13 Mg C ha-1 yr-1, respectively, comparable to IPCC estimates. Our spatially-explicit peat loss estimates could be incorporated into decision support tools to inform management decisions regarding peatland C and other ecosystem services.


Assuntos
Carbono , Solo , Carbono/análise , Ecossistema , Minnesota
11.
Appl Environ Microbiol ; 87(12): e0024121, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811029

RESUMO

Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae, were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae. IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.


Assuntos
Água Subterrânea , Magnoliopsida/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Alaska , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Metano/metabolismo , Microbiota , Solo
12.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33199011

RESUMO

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Assuntos
Ecossistema , Incêndios , Carbono , Ciclo do Carbono , Solo , Áreas Alagadas
13.
Microb Ecol ; 80(3): 593-602, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32388577

RESUMO

Peatlands are important players in climate change-biosphere feedbacks via long-term net carbon (C) accumulation in soil organic matter and as potential net C sources including the potent greenhouse gas methane (CH4). Interactions of climate, site-hydrology, plant community, and groundwater chemical factors influence peatland development and functioning, including C dioxide (CO2) and CH4 fluxes, but the role of microbial community composition is not well understood. To assess microbial functional and taxonomic dissimilarities, we used high throughput sequencing of the small subunit ribosomal DNA (SSU rDNA) to determine bacterial and archaeal community composition in soils from twenty North American peatlands. Targeted DNA metabarcoding showed that although Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla on average, intermediate and rich fens hosted greater diversity and taxonomic richness, as well as an array of candidate phyla when compared with acidic and nutrient-poor poor fens and bogs. Moreover, pH was revealed to be the strongest predictor of microbial community structure across sites. Predictive metagenome content (PICRUSt) showed increases in specific genes, such as purine/pyrimidine and amino-acid metabolism in mid-latitude peatlands from 38 to 45° N, suggesting a shift toward utilization of microbial biomass over utilization of initial plant biomass in these microbial communities. Overall, there appears to be noticeable differences in community structure between peatland classes, as well as differences in microbial metabolic activity between latitudes. These findings are in line with a predicted increase in the decomposition and accelerated C turnover, and suggest that peatlands north of 37° latitude may be particularly vulnerable to climate change.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Clima , Microbiota , Áreas Alagadas , Ontário , Microbiologia do Solo , Estados Unidos
14.
Sci Total Environ ; 682: 611-622, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31129544

RESUMO

Climate change is expected to alter the hydrology and vascular plant communities in peatland ecosystems. These changes may have as yet unexplored impacts on peat mercury (Hg) concentrations and net methylmercury (MeHg) production. In this study, peat was collected from PEATcosm, an outdoor, controlled mesocosm experiment where peatland water table regimes and vascular plant functional groups were manipulated over several years to simulate potential climate change effects. Potential Hg(II) methylation and MeHg demethylation rate constants were assessed using enriched stable isotope incubations at the end of the study in 2015, and ambient peat total Hg (THg) and MeHg concentration depth profiles were tracked annually from 2011 to 2014. Peat THg and MeHg concentrations and the proportion of THg methylated (%MeHg) increased significantly within the zone of water table fluctuation when water tables were lowered, but potential Hg(II) methylation rate constants were similar regardless of water table treatment. When sedges dominate over ericaceous shrubs, MeHg concentrations and %MeHg became significantly elevated within the sedge rooting zone. Increased desorption of Hg(II) and MeHg from the solid phase peat into pore water occurred with a lowered water table and predominant sedge cover, likely due to greater aerobic peat decomposition. Deeper, more variable water tables and a transition to sedge-dominated communities coincided with increased MeHg accumulation within the zone of water table fluctuation. Sustained high water tables promoted the net downward migration of Hg(II) and MeHg. The simultaneous decrease in Hg(II) and MeHg concentrations in the near-surface peat and accumulation deeper in the peat profile, combined with the trends in Hg(II) and MeHg partitioning to mobile pore waters, suggest that changes to peatland hydrology and vascular plant functional groups redistribute peat Hg(II) and MeHg via vertical hydrochemical transport mechanisms.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Ecossistema , Solo , Traqueófitas
15.
New Phytol ; 223(1): 33-39, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30636276

RESUMO

The extent to which ectomycorrhizal (ECM) fungi enable plants to access organic nitrogen (N) bound in soil organic matter (SOM) and transfer this growth-limiting nutrient to their plant host, has important implications for our understanding of plant-fungal interactions, and the cycling and storage of carbon (C) and N in terrestrial ecosystems. Empirical evidence currently supports a range of perspectives, suggesting that ECM vary in their ability to provide their host with N bound in SOM, and that this capacity can both positively and negatively influence soil C storage. To help resolve the multiplicity of observations, we gathered a group of researchers to explore the role of ECM fungi in soil C dynamics, and propose new directions that hold promise to resolve competing hypotheses and contrasting observations. In this Viewpoint, we summarize these deliberations and identify areas of inquiry that hold promise for increasing our understanding of these fundamental and widespread plant symbionts and their role in ecosystem-level biogeochemistry.


Assuntos
Carbono/metabolismo , Micorrizas/fisiologia , Microbiologia do Solo , Solo/química , Nitrogênio/metabolismo , Filogenia
16.
Environ Pollut ; 246: 148-162, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30543941

RESUMO

Humans have dramatically increased atmospheric nitrogen (N) deposition globally. At the coarsest resolution, N deposition is correlated with shifts from ectomycorrhizal (EcM) to arbuscular mycorrhizal (AM) tree dominance. At finer resolution, ectomycorrhizal fungal (EcMF) and arbuscular mycorrhizal fungal (AMF) communities respond strongly to long-term N deposition with the disappearance of key taxa. Conifer-associated EcMF are more sensitive than other EcMF, with current estimates of critical loads at 5-6 kg ha-1 yr-1 for the former and 10-20 kg ha-1 yr-1 for the latter. Where loads are exceeded, strong plant-soil and microbe-soil feedbacks may slow recovery rates after abatement of N deposition. Critical loads for AMF and tropical EcMF require additional study. In general, the responses of EcMF to N deposition are better understood than those of AMF because of methodological tractability. Functional consequences of EcMF community change are linked to decreases by fungi with medium-distance exploration strategies, hydrophobic walls, proteolytic capacity, and perhaps peroxidases for acquiring N from soil organic matter. These functional losses may contribute to declines in forest floor decomposition under N deposition. For AMF, limited capacity to directly access complexed organic N may reduce functional consequences, but research is needed to test this hypothesis. Mycorrhizal biomass often declines with N deposition, but the relative contributions of alternate mechanisms for this decline (lower C supply, higher C cost, physiological stress by N) have not been quantified. Furthermore, fungal biomass and functional responses to N inputs probably depend on ecosystem P status, yet how N deposition-induced P limitation interacts with belowground C flux and mycorrhizal community structure and function is still unclear. Current 'omic analyses indicate potential functional differences among fungal lineages and should be integrated with studies of physiology, host nutrition, growth and health, fungal and plant community structure, and ecosystem processes.


Assuntos
Florestas , Micorrizas/classificação , Micorrizas/fisiologia , Nitrogênio/metabolismo , Microbiologia do Solo , Biomassa , Carbono/metabolismo , Ecossistema , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Fósforo/metabolismo , Solo/química , Árvores/microbiologia
17.
New Phytol ; 217(1): 16-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076547

RESUMO

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Biológicos , Sphagnopsida/genética , Adaptação Fisiológica , Evolução Biológica , Ecologia , Filogenia , Análise de Sequência de DNA , Sphagnopsida/citologia , Sphagnopsida/fisiologia
18.
FEMS Microbiol Ecol ; 93(7)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854677

RESUMO

Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with abiotic variables of peat and pore water. We hypothesized that each factor influenced fungi, but that depth would have the strongest effect early in the experiment. We found that (i) communities were strongly depth stratified; fungi were four times more abundant in the upper (10-20 cm) than the lower (30-40 cm) depth, and dominance shifted from ericoid mycorrhizal fungi to saprotrophs and endophytes with increasing depth; (ii) the influence of plant functional group was depth dependent, with Ericaceae structuring the community in the upper peat only; (iii) water table had minor influences; and (iv) communities strongly covaried with abiotic variables, including indices of peat and pore water carbon quality. Our results highlight the importance of vertical stratification to peatland fungi, and the depth dependency of plant functional group effects, which must be considered when elucidating the role of fungi in peatland carbon dynamics.


Assuntos
Fungos/classificação , Micorrizas/classificação , Microbiologia do Solo , Sphagnopsida/microbiologia , Biodiversidade , Carbono , DNA Intergênico/genética , Fungos/genética , Água Subterrânea , Solo
19.
Glob Chang Biol ; 23(12): 5412-5425, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28675672

RESUMO

Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.


Assuntos
Carbono/química , Florestas , Tecnologia de Sensoriamento Remoto , Solo/química , Áreas Alagadas , Equador , Monitoramento Ambiental , Fatores de Tempo
20.
New Phytol ; 211(1): 57-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27173909

RESUMO

57 I. 57 II. 58 III. 59 IV. 59 V. 61 VI. 62 63 References 63 SUMMARY: Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20-30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum-microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant-microbiome interactions and the metabolic potential of constituent microbial populations must be revealed.


Assuntos
Microbiota/fisiologia , Sphagnopsida/microbiologia , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...