Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015465

RESUMO

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
2.
Hum Mol Genet ; 29(24): 3872-3881, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33258468

RESUMO

Genomic instability contributes to a variety of potentially damaging conditions, including DNA-based rearrangements. Breakage in the form of double strand breaks (DSBs) increases the likelihood of DNA damage, mutations and translocations. Certain human DNA regions are known to be involved in recurrent translocations, such as the palindrome-mediated rearrangements that have been identified at the breakpoints of several recurrent constitutional translocations: t(11;22)(q23;q11), t(17;22)(q11;q11) and t(8;22) (q24;q11). These breakpoints occur at the center of palindromic AT-rich repeats (PATRRs), which suggests that the structure of the DNA may play a contributory role, potentially through the formation of secondary cruciform structures. The current study analyzed the DSB propensity of these PATRR regions in both lymphoblastoid (mitotic) and spermatogenic cells (meiotic). Initial results found an increased association of sister chromatid exchanges (SCEs) at PATRR regions in experiments that used SCEs to assay DSBs, combining SCE staining with fluorescence in situ hybridization (FISH). Additional experiments used chromatin immunoprecipitation (ChIP) with antibodies for either markers of DSBs or proteins involved in DSB repair along with quantitative polymerase chain reaction to quantify the frequency of DSBs occurring at PATRR regions. The results indicate an increased rate of DSBs at PATRR regions. Additional ChIP experiments with the cruciform binding 2D3 antibody indicate an increased rate of cruciform structures at PATRR regions in both mitotic and meiotic samples. Overall, these experiments demonstrate an elevated rate of DSBs at PATRR regions, an indication that the structure of PATRR containing DNA may lead to increased breakage in multiple cellular environments.


Assuntos
Cromossomos Humanos/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Sequências Repetitivas de Ácido Nucleico , Espermatozoides/patologia , Translocação Genética , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Espermatozoides/metabolismo
3.
Cytogenet Genome Res ; 156(4): 185-190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566958

RESUMO

The AT-rich repeat on chromosome 22q11.2 is known to be involved in the recurrent constitutional t(11;22)(q23;q11.2). Segregation of this translocation has been reported in several hundred families, but a de novo translocation event has been identified in only 8 cases, and everytime the translocation originated in paternal germ-line chromosomes. Further, de novo t(11;22) rearrangements have been detected in the sperm of healthy males, leading to the hypothesis that it occurs somewhere along the meiosis-spermatogenesis pathway. This report describes a woman whose constitutional karyotype revealed mosaicism for the recurrent t(11;22) and the subsequent testing performed to determine the origin of the translocation event. Karyotype analysis, translocation-specific PCR, human identity testing, and a SNP genotyping array were performed to detect mosaicism and/or chimerism. As a result, the SNP genotyping array revealed no evidence for mosaicism in genomic DNA beyond mosaicism for the balanced t(11;22). Human identity testing and the SNP genotyping array ruled out chimerism. PCR of the translocation breakpoint followed by sequencing confirmed that the translocation had occurred at the typical t(11;22) breakpoints. In conclusion, these results indicate that the translocation occurred post-fertilization, providing the first evidence of a de novo t(11;22)(q23;q11.2) occurring in a maternal mitotic environment.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 22/genética , Translocação Genética , Aborto Espontâneo/genética , Adulto , Feminino , Humanos , Cariótipo , Mosaicismo , Síndrome do Ovário Policístico/genética , Análise de Sequência de DNA
4.
Fungal Genet Biol ; 89: 18-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26808821

RESUMO

Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and synthetic biology efforts toward discovering novel fungal enzymes and metabolites.


Assuntos
Produtos Biológicos , Vias Biossintéticas/genética , Genes Fúngicos , Genoma Fúngico , Família Multigênica , Alcaloides , Sequência de Aminoácidos , Biologia Computacional , Curadoria de Dados , Fungos/genética , Filogenia , Policetídeos , Terpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...