Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0230623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882570

RESUMO

IMPORTANCE: Bacterial resistance to antibiotics is a crisis. Acinetobacter baumannii is among the CDC urgent threat pathogens in part for this reason. Lipopeptides known as turnercyclamycins are produced by symbiotic bacteria that normally live in marine mollusks, where they may be involved in shaping their symbiotic niche. Turnercyclamycins killed Gram-negative pathogens including drug-resistant Acinetobacter, but how do the mechanisms of resistance compare to other lipopeptide drugs? Here, we define resistance from a truncation of MlaA, a protein involved in regulating bacterial membrane phospholipids. Intriguingly, this resistance mechanism only affected one turnercyclamycin variant, which differed only in two atoms in the lipid tail of the compounds. We could not obtain significant resistance to the second turnercyclamycin variant, which was also effective in an infection model. This study reveals an unexpected subtlety in resistance to lipopeptide antibiotics, which may be useful in the design and development of antibiotics to combat drug resistance.


Assuntos
Colistina , Lipopeptídeos , Colistina/farmacologia , Lipopeptídeos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
2.
Virulence ; 13(1): 386-413, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35166645

RESUMO

HIV-1 cDNA pre-integration complexes persist for weeks in macrophages and remain transcriptionally active. While previous work has focused on the transcription of HIV-1 genes; our understanding of the cellular milieu that accompanies viral production is incomplete. We have used an in vitro system to model HIV-1 infection of macrophages, and single-cell RNA sequencing (scRNA-seq) to compare the transcriptomes of uninfected cells, cells harboring pre-integration complexes (PIC), and those containing integrated provirus and making late HIV proteins. scRNA-seq can distinguish between provirus and PIC cells because their background transcriptomes vary dramatically. PIC cell transcriptomes are characterized by NFkB and AP-1 promoted transcription, while transcriptomes of cells transcribing from provirus are characterized by E2F family transcription products. We also find that the transcriptomes of PIC cells and Bystander cells (defined as cells not producing any HIV transcript and thus presumably not infected) are indistinguishable except for the presence of HIV-1 transcripts. Furthermore, the presence of pathogen alters the transcriptome of the uninfected Bystander cells, so that they are distinguishable from true control cells (cells not exposed to any pathogen). Therefore, a single cell comparison of transcriptomes from provirus and PIC cells provides a new understanding of the transcriptional changes that accompany HIV-1 integration.


Assuntos
Infecções por HIV , HIV-1 , DNA Complementar , HIV-1/genética , Humanos , Macrófagos , Provírus/genética
3.
ACS Chem Biol ; 16(9): 1654-1662, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423964

RESUMO

Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.


Assuntos
Aminas/metabolismo , Canais de Cálcio/metabolismo , Células Receptoras Sensoriais/metabolismo , Aminas/administração & dosagem , Animais , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Masculino , Camundongos , Técnicas de Patch-Clamp , Transdução de Sinais , Sensação Térmica/fisiologia , Urocordados , Vertebrados
4.
ACS Chem Neurosci ; 12(14): 2693-2704, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34213884

RESUMO

In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3ß4 (mouse) and α6/α3ß4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 µM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.


Assuntos
Receptores Nicotínicos , Urocordados , Animais , Aplysia , Camundongos , Antagonistas Nicotínicos/farmacologia , Nylons , Ratos , Receptor Nicotínico de Acetilcolina alfa7
5.
Cell Chem Biol ; 28(11): 1628-1637.e4, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34146491

RESUMO

Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Gammaproteobacteria/efeitos dos fármacos , Antibacterianos/química , Células Cultivadas , Colistina , Farmacorresistência Bacteriana/efeitos dos fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana
6.
PLoS One ; 15(5): e0233485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470050

RESUMO

Antimicrobial resistance is a growing global health and economic concern. Current antimicrobial agents are becoming less effective against common bacterial infections. We previously identified pyrrolocins A and C, which showed activity against a variety of Gram-positive bacteria. Structurally similar compounds, known as pyrrolidinediones (e.g., TA-289, equisetin), also display antibacterial activity. However, the mechanism of action of these compounds against bacteria was undetermined. Here, we show that pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase (ACC), the first step in fatty acid synthesis. We used transcriptomic data, metabolomic analysis, fatty acid rescue and acetate incorporation experiments to show that a major mechanism of action of the pyrrolidinediones is inhibition of fatty acid biosynthesis, identifying ACC as the probable molecular target. This hypothesis was further supported using purified proteins, demonstrating that biotin carboxylase is the inhibited component of ACC. There are few known antibiotics that target this pathway and, therefore, we believe that these compounds may provide the basis for alternatives to current antimicrobial therapy.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Pirrolidinonas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Acetil-CoA Carboxilase/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Domínio Catalítico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Metabolômica , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
7.
J Nat Prod ; 82(4): 1024-1028, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30793902

RESUMO

Three new pyoluteorin analogues, mindapyrroles A-C (1-3), were purified from Pseudomonas aeruginosa strain 1682U.R.0a.27, a gill-associated bacterium isolated from the tissue homogenate of the giant shipworm Kuphus polythalamius. Mindapyrroles B and C inhibit the growth of multiple pathogenic bacteria, with mindapyrrole B (2) showing the most potent antimicrobial activity and widest selectivity index over mammalian cells. Preliminary structure-activity relationship analysis showed that dimerization of the pyoluteorin moiety through a C-C linkage is detrimental to the antimicrobial activity, but addition of an aerugine unit in the methylene bridge is favorable for both the antimicrobial activity and selectivity index.


Assuntos
Bivalves/química , Pseudomonas aeruginosa/química , Pirróis/isolamento & purificação , Animais , Anti-Infecciosos/farmacologia , Pirróis/química , Pirróis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...