Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 4): 119115, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729413

RESUMO

Thermokarst (thaw) lakes of permafrost peatlands are among the most important sentinels of climate change and sizable contributors of greenhouse gas emissions (GHG) in high latitudes. These lakes are humic, often acidic and exhibit fast growing/drainage depending on the local environmental and permafrost thaw. In contrast to good knowledge of the thermokarst lake water hydrochemistry and GHG fluxes, the sediments pore waters remain virtually unknown, despite the fact that these are hot spots of biogeochemical processes including GHG generation. Towards better understating of dissolved organic matter (DOM) quality at the lake water - sediment interface and in the sediments pore waters, here we studied concentration and optical (UV, visual) properties of DOM of 11 thermokarst lakes located in four permafrost zones of Western Siberia Lowland. We found systematic evaluation of DOM concentration, SUVA and various optical parameters along the vertical profile of lake sediments. The lake size and hence, the stage of lake development, had generally weak control on DOM quality. The permafrost zone exhibited clear impact on DOM porewater concentration, optical characteristics, aromaticity and weight average molecular weight (WAMW). The lowest quality of DOM, reflected in highest SUVA and WAMW, corresponding to the dominance of terrestrial sources, was observed at the southern boundary of the permafrost, in the sporadic/discontinuous zone. This suggests active mobilization of organic matter leachates from the interstitial peat and soil porewaters to the lake, presumably via subsurface or suprapermafrost influx. Applying a substitute space for time scenario for future evolution of OM characteristics in thermokarst lake sediments of Western Siberia, we foresee a decrease of DOM quality, molecular weight and potential bioavailability in lakes of continuous permafrost zone, and an increase in these parameters in the sporadic/discontinuous permafrost zone.

2.
Sci Total Environ ; 936: 173491, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796013

RESUMO

In order to foresee the impact of permafrost thaw on CO2 emissions by high-latitude rivers, in-situ measurements across a permafrost and climate/vegetation gradient, coupled with assessment of possible physico-chemical and landscape controlling factors are necessary. Here we chose 34 catchments of variable stream order (1 to 9) and watershed size (1 to >105 km2) located across a permafrost and biome gradient in the Western Siberian Lowland (WSL), from the permafrost-free southern taiga to the continuous permafrost zone of tundra. Across the south-north transect, maximal CO2 emissions (2.2 ± 1.1 g C-CO2 m-2 d-1) occurred from rivers of the discontinuous/sporadic permafrost zone, i.e., geographical permafrost thawing boundary. In this transitional zone, fluvial C emission to downstream export ratio was as high as 8.0, which greatly (x 10) exceeded the ratio in the permafrost free and continuous permafrost zones. Such a high evasion at the permafrost thawing front can stem from an optimal combination of multiple environmental factors: maximal active layer thickness, sizable C stock in soils, and mobilization of labile organic nutrients from dispersed peat ice that enhanced DOC and POC processing in the water column, likely due to priming effect. Via a substituting space for time approach, we foresee an increase in CO2 and CH4 fluvial evasion in the continuous and discontinuous permafrost zone, which is notably linked to the greening of tundra increases in biomass of the riparian vegetation, river water warming and thermokarst lake formation on the watershed.

3.
Glob Chang Biol ; 30(1): e17120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273495

RESUMO

Shallow thermokarst lakes are important sources of greenhouse gases (GHGs) such as methane (CH4 ) and carbon dioxide (CO2 ) resulting from continuous permafrost thawing due to global warming. Concentrations of GHGs dissolved in water typically increase with decreasing lake size due to coastal abrasion and organic matter delivery. We hypothesized that (i) CH4 oxidation depends on the natural oxygenation gradient in the lake water and sediments and increases with lake size because of stronger wind-induced water mixing; (ii) CO2 production increases with decreasing lake size, following the dissolved organic matter gradient; and (iii) both processes are more intensive in the upper than deeper sediments due to the in situ gradients of oxygen (O2 ) and bioavailable carbon. We estimated aerobic CH4 oxidation potentials and CO2 production based on the injection of 13 C-labeled CH4 in the 0-10 cm and 10-20 cm sediment depths of small (~300 m2 ), medium (~3000 m2 ), and large (~106 m2 ) shallow thermokarst lakes in the West Siberian Lowland. The CO2 production was 1.4-3.5 times stronger in the upper sediments than in the 10-20 cm depth and increased from large (158 ± 18 nmol CO2 g-1 sediment d.w. h-1 ) to medium and small (192 ± 17 nmol CO2 g-1 h-1 ) lakes. Methane oxidation in the upper sediments was similar in all lakes, while at depth, large lakes had 14- and 74-fold faster oxidation rates (5.1 ± 0.5 nmol CH4 -derived CO2 g-1 h-1 ) than small and medium lakes, respectively. This was attributed to the higher O2 concentration in large lakes due to the more intense wind-induced water turbulence and mixing than in smaller lakes. From a global perspective, the CH4 oxidation potential confirms the key role of thermokarst lakes as an important hotspot for GHG emissions, which increase with the decreasing lake size.


Assuntos
Gases de Efeito Estufa , Lagos , Metano/análise , Dióxido de Carbono/análise , Oxirredução , Água
4.
Sci Total Environ ; 859(Pt 1): 160202, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395838

RESUMO

Despite the importance of small and medium size rivers of Siberian boreal zone in greenhouse gases (GHG) emission, major knowledge gaps exist regarding its temporal variability and controlling mechanisms. Here we sampled 11 pristine rivers of the southern taiga biome (western Siberia Lowland, WSL), ranging in watershed area from 0.8 to 119,000 km2, to reveal temporal pattern and examine main environmental controllers of GHG emissions from the river water surfaces. Floating chamber measurements demonstrated that CO2 emissions from water surface decreased by 2 to 4-folds from spring to summer and autumn, were independent of the size of the watershed and stream order and did not exhibit sizable (>30 %, regardless of season) variations between day and night. The CH4 concentrations and fluxes increased in the order "spring ≤ summer < autumn" and ranged from 1 to 15 µmol L-1 and 5 to 100 mmol m-2 d-1, respectively. The CO2 concentrations and fluxes (range from 100 to 400 µmol L-1 and 1 to 4 g C m-2 d-1, respectively) were positively correlated with dissolved and particulate organic carbon, total nitrogen and bacterial number of the water column. The CH4 concentrations and fluxes were positively correlated with phosphate and ammonia concentrations. Of the landscape parameters, positive correlations were detected between riparian vegetation biomass and CO2 and CH4 concentrations. Over the six-month open-water period, areal emissions of C (>99.5 % CO2; <0.5 % CH4) from the watersheds of 11 rivers were equal to the total downstream C export in this part of the WSL. Based on correlations between environmental controllers (watershed land cover and the water column parameters), we hypothesize that the fluxes are largely driven by riverine mineralization of terrestrial dissolved and particulate OC, coupled with respiration at the river bottom and riparian sediments. It follows that, under climate warming scenario, most significant changes in GHG regimes of western Siberian rivers located in permafrost-free zone may occur due to changes in the riparian zone vegetation and water coverage of the floodplains.


Assuntos
Carbono , Gases de Efeito Estufa , Carbono/análise , Dióxido de Carbono/análise , Metano/análise , Rios , Estações do Ano , Gases de Efeito Estufa/análise , Água
5.
Environ Sci Pollut Res Int ; 30(1): 823-836, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904738

RESUMO

To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B), and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents, and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.


Assuntos
Solo , Oligoelementos , Solo/química , Gelo , Congelamento , Metais , Matéria Orgânica Dissolvida , Bactérias
6.
Sci Total Environ ; 853: 158701, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36108862

RESUMO

Extensive studies have been performed on wildfire impact on terrestrial and aquatic ecosystems in the taiga biome, however consequences of wildfires in the tundra biome remain poorly understood. In such a biome, permafrost peatlands occupy a sizable territory in the Northern Hemisphere and present an extensive and highly vulnerable storage of organic carbon. Here we used an experimental approach to model the impact of ash produced from burning of main tundra organic constituents (i.e., moss, lichen and peat) on surrounding aquatic ecosystems. We studied the chemical composition of aqueous leachates produced during short-term (1 week) interaction of ash with distilled water and organic-rich lake water at 5 gsolid L-1 and 20 °C. The addition of ash enriched the fluid phase in major cations (i.e., Na, Ca, Mg), macro- (i.e., P, K, Si) and micronutrients (i.e., Mn, Fe, Co, Ni, Zn, Mo). This enrichment occurred over <2 days of experiment. Among 3 studied substrates, moss ash released the largest amount of macro- and micro-components into the aqueous solution. To place the obtained results in the environmental context of a peatbog watershed, we assume a fire return interval of 56 years and that the entire 0-10 cm of upper peat is subjected to fire impact. These mass balance calculations demonstrated that maximal possible delivery of elements from ash after soil burning to the hydrological network is negligibly small (<1-2 %) compared to the annual riverine export flux and element storage in thermokarst lakes. As such, even a 5-10 fold increase in tundra wildfire frequency may not sizably modify nutrient and metal fluxes and pools in the surrounding aquatic ecosystems. This result requires revisiting the current paradigm on the importance of wildfire impact on permafrost peatlands and calls a need for experimental work on other ecosystem compartments (litter, shrubs, frozen peat) which are subjected to fire events.


Assuntos
Água Potável , Pergelissolo , Ecossistema , Tundra , Solo/química , Carbono/análise , Lagos , Micronutrientes
7.
Environ Sci Process Impacts ; 24(9): 1443-1459, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35226006

RESUMO

The fate of organic carbon (OC), nutrients and metals accumulated in thawing permafrost ice is at the forefront of environmental studies in the Arctic. In contrast to a fairly good understanding of the chemical nature of dissolved OC (DOC) and metals in surface Arctic waters, the speciation and colloidal status of solutes accommodated in the dispersed ground ice remain virtually unknown. Here we used a size fractionation procedure (centrifugal ultrafiltration) to quantify the proportion of colloidal (3 kDa to 0.45 µm) and conventionally dissolved low molecular weight (LMW<3 kDa) fractions of DOC, and major and trace elements in the porewater and ice of 5 peat cores sampled along a 400 km permafrost and climate gradient in the largest peatland in the world, the Western Siberian Lowland (WSL). We discovered that the strong (a factor of 2 to 10) increase in the total dissolved (<0.45 µm) concentration of DOC and most major and trace elements in the peat ice relative to the peat porewater from the thawed layer was essentially linked to an increase in the LMW<3 kDa fraction. This increase in the potentially bioavailable fraction in the peat ice relative to the porewater was especially pronounced for DOC, P and many trace elements including metal micronutrients, and was observed throughout all permafrost zones. This contrasted with element distribution in the upper (thaw) layer, where the majority of these elements were present in the colloidal pool. Following previous experiments on permafrost peatland surface waters, we hypothesized that the freeze-thaw cycles of peat porewater were responsible for generation of the LMW fraction in the bottom part of the peat core. Results of this study demonstrate that carbon, and macro- and micro-nutrients as well as trace metals in ground ice of permafrost peatlands are essentially present in a low molecular weight (<3 kDa) and potentially bioavailable form that can strongly impact the riverine export fluxes of solutes during permafrost thaw.


Assuntos
Pergelissolo , Oligoelementos , Carbono/análise , Coloides , Gelo , Pergelissolo/química , Sibéria , Solo
8.
Chemosphere ; 266: 128953, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33223213

RESUMO

The physical and chemical consequences of massive ground ice (wedges) melt upon permafrost thaw is one of the central issues of environmental research linked to climate warming in the Arctic. Little is known about the chemical properties of dispersed ground ice abundant throughout permafrost peatlands that can easily melt with increasing active layer thickness (ALT). This is especially pertinent in continental lowlands, that account for sizeable areas of the Arctic, and contain high amount of organic carbon in both solid (peat) and liquid (porewater) phases. Here we studied 8 peat cores (0-130 cm depth)-comprised of porewater from the active layer (0-45 cm) as well as ice dispersed in frozen peat (40-130 cm)-across a latitudinal profile of Western Siberia Lowland (WSL) extending from discontinuous into continuous permafrost zones. Dissolved Organic Carbon (DOC), alkali and alkaline-earth metals (Ca, Mg, Sr, Ba, Li, Rb, Cs), sulfate, phosphorus, some trace elements (Al, Fe, Mn, Zn, Ni, Co, V, As, Y, REE, Zr, Hf, U) were sizably [more than 3 times] enriched in peat ice compared to peat porewaters from the active layer. In most sampled cores, there was a local maximum of strong enrichment (up to factors between 14 and 58) in DOC, P, Ca, Mg, Mn, Fe, Sr, As located 30-50 cm below the active layer. This maximum likely occurred due to solute concentration during full freezing of the soil column during winter. There was a sizable correlation between DOC, Al, Fe and other major and trace element concentrations that suggests strong control of organic complexes and organo-mineral (Al, Fe) colloids on element migration throughout the peat profile. The pool of C, major cations and trace metals in peat ice (40-130 cm) was approximately 3-55 times higher than the pool of these elements in porewaters from the active layer (0-40 cm). A 1-m increase of the ALT over the next 100 years is capable of mobilizing 58 ± 38 Tg of DOC from soil ice into the rivers and lakes of the WSL latitudinal belt (63-67 °N). This fast lateral export of C (3.7 ± 2.7 t C km-2 y-1) may double current C yields in WSL rivers (3.4 ± 1.3 t C km-2 y-1). A strong increase (150-200%) in riverine export of Zn, P and Cs may also occur while other micronutrients (Fe, Ni, Co, Ba, Mo, Rb) and toxicants (Cd, As, Al) may be affected to a lesser degree (20-30% increase). We propose a global peat ice inventory in permafrost regions is essential for assessing the consequences of permafrost thaw on surface aquatic systems.


Assuntos
Pergelissolo , Regiões Árticas , Carbono/análise , Gelo , Sibéria
9.
Environ Pollut ; 254(Pt B): 113083, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31473386

RESUMO

Arctic permafrost soils contain large amounts of organic carbon and the pollutant mercury (Hg). Arctic warming and associated changes in hydrology, biogeochemistry and ecology risk mobilizing soil Hg to rivers and to the Arctic Ocean, yet little is known about the quantity, timing and mechanisms involved. Here we investigate seasonal particulate Hg (PHg) and organic carbon (POC) export in 32 small and medium rivers across a 1700 km latitudinal permafrost transect of the western Siberian Lowland. The PHg concentrations in suspended matter increased with decreasing watershed size. This underlines the significance of POC-rich small streams and wetlands in PHg export from watersheds. Maximum PHg concentrations and export fluxes were located in rivers at the beginning of permafrost zone (sporadic permafrost). We suggest this reflects enhanced Hg mobilization at the permafrost boundary, due to maximal depth of the thawed peat layer. Both the thickness of the active (unfrozen) peat layer and PHg run-off progressively move to the north during the summer and fall seasons, thus leading to maximal PHg export at the sporadic to discontinuous permafrost zone. The discharge-weighed PHg:POC ratio in western Siberian rivers (2.7 ±â€¯0.5 µg Hg: g C) extrapolated to the whole Ob River basin yields a PHg flux of 1.5 ±â€¯0.3 Mg y-1, consistent with previous estimates. For current climate warming and permafrost thaw scenarios in western Siberia, we predict that a northward shift of permafrost boundaries and increase of active layer depth may enhance the PHg export by small rivers to the Arctic Ocean by a factor of two over the next 10-50 years.


Assuntos
Mercúrio/análise , Pergelissolo/química , Poluentes do Solo/análise , Regiões Árticas , Clima , Hidrologia , Rios/química , Estações do Ano , Sibéria , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...