Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116758, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796972

RESUMO

Sorafenib (BAY 43-9006) was developed as a multi-kinase inhibitor to treat advanced renal cell, hepatocellular, and thyroid cancers. The cytotoxic effect of sorafenib on cancer cells results from not only inhibiting the MEK/ERK signaling pathway (the on-target effect) but also inducing oxidative damage (the off-target effect). The inhibitory effect of sorafenib on system Xc- (xCT), a cystine/glutamate antiporter, promotes ferroptosis induction and accounts for oxidative damage. While emerging studies on ferroptosis in cancers have garnered increasing attention, the lack of consideration for ferroptosis inducers (FINs) with favorable pharmacokinetics could be problematic. Herein, we remodeled the chemical structure of sorafenib, of which pharmacokinetics and safety are already assured, to customize the off-target effect (i.e., ferroptosis induction) to on-target by disrupting the adenine-binding motif. JB3, a sorafenib derivative (i.e., JB compounds), with a tenfold higher IC50 toward RAF1 because of chemical remodeling, induced strong cytotoxicity in the elastin-sensitive lung cancer cells, while it was markedly reduced by ferrostatin-1. The 24% oral bioavailability of JB3 in rats accounted for a significant anti-tumor effect of orally administrated JB3 in xenograft models. These results indicate that JB3 could be further developed as an orally bioavailable FIN in novel anti-cancer therapeutics.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias Pulmonares , Sorafenibe , Sorafenibe/farmacologia , Sorafenibe/administração & dosagem , Ferroptose/efeitos dos fármacos , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Administração Oral , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Camundongos , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Camundongos Nus
2.
J Enzyme Inhib Med Chem ; 37(1): 1656-1666, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35695156

RESUMO

Despite extensive efforts over 40 years, few effective KRAS inhibitors have been developed to date, mainly due to the undruggable features of KRAS proteins. In addition to the direct approach to KRAS via covalent inhibition, modulation of the prenyl-binding protein PDEδ that binds with farnesylated KRAS has emerged as an alternative strategy to abrogate KRAS activity. For the verification of new therapeutic strategies, chemical probes with the dual functions of visualisation and pharmacological inhibition against oncogenic proteins are enormously valuable to understand cellular events related to cancer. Here, we report indolizino[3,2-c]quinoline (IQ)-based fluorescent probes (PD3 and PD3-B) for PDEδ inhibition. By using the unique fluorescent characteristics of the IQ scaffold, a fluorescence polarisation (FP)-based binding assay identified PD3 as the most effective PDEδ probe among the tested PD analogues, with a low Kd value of 0.491 µM and long retention time in the binding site of PDEδ. In particular, a FP-based competition assay using deltarasin verified that PD3 occupies the farnesylation binding site of PDEδ, excluding the possibility that the FP signals resulted from non-specific hydrophobic interactions between the ligand and protein in the assay. We also designed and synthesised PD3-B (5), an affinity-based probe (ABP) from the PD3 structure, which enabled us to pull down PDEδ from bacterial lysates containing a large number of intrinsic bacterial proteins. Finally, KRAS relocalization was verified in PANC-1 cells by treatment with PD3, suggesting its potential as an effective probe to target PDEδ.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Neoplasias , Sítios de Ligação , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
JACS Au ; 2(4): 839-852, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557769

RESUMO

Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 µM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.

4.
JACS Au ; 2(5): 1105-1114, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35615714

RESUMO

Dynamic covalent exchange cascades with cellular thiols are of interest to deliver substrates to the cytosol and to inhibit the entry of viruses. The best transporters and inhibitors known today are cyclic cascade exchangers (CAXs), producing a new exchanger with every exchange, mostly cyclic oligochalcogenides, particularly disulfides. The objective of this study was to expand the dynamic covalent chalcogen exchange cascades in thiol-mediated uptake by inserting pnictogen relays. A family of pnictogen-expanded cyclic disulfides covering As(III), Sb(III), and Bi(III) is introduced. Their ability to inhibit thiol-mediated cytosolic delivery is explored with fluorescently labeled CAXs as transporters. The promise of inhibiting viral entry is assessed with SARS-CoV-2 lentiviral vectors. Oxygen-bridged seven-membered 1,3,2-dithiabismepane rings are identified as privileged scaffolds. The same holds for six-membered 1,3,2-dithiarsinane rings made from asparagusic acid and para-aminophenylarsine oxide, which are inactive or toxic when used alone. These chemically complementary Bi(III) and As(III) cascade exchangers inhibit both thiol-mediated cytosolic delivery and SARS-CoV-2 lentivector uptake at concentrations of 10 µM or lower. Crystal structures, computational models, and exchange kinetics support that lentivector entry inhibition of the contracted dithiarsinane and the expanded dithiabismepane rings coincides with exchange cascades that occur without the release of the pnictogen relay and benefit from noncovalent pnictogen bonds. The identified leads open perspectives regarding drug delivery as well as unorthodox approaches toward dynamic covalent inhibition of cellular entry.

5.
JACS Au ; 1(6): 710-728, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467328

RESUMO

This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.

6.
Theranostics ; 11(4): 1918-1936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408789

RESUMO

Rationale: The type I insulin-like growth factor receptor (IGF-1R) signaling pathway plays key roles in the development and progression of numerous types of human cancers, and Src and AXL have been found to confer resistance to anti-IGF-1R therapies. Hence, co-targeting Src and AXL may be an effective strategy to overcome resistance to anti-IGF-1R therapies. However, pharmacologic targeting of these three kinases may result in enhanced toxicity. Therefore, the development of novel multitarget anticancer drugs that block IGF-1R, Src, and AXL is urgently needed. Methods: We synthesized a series of phenylpyrazolo[3,4-d]pyrimidine (PP)-based compounds, wherein the PP module was conjugated with 2,4-bis-arylamino-1,3-pyrimidines (I2) via a copper(I)-catalyzed alkyne-azide cycloaddition reaction. To develop IGF-1R/Src/AXL-targeting small molecule kinase inhibitors, we selected LL6 as an active compound and evaluated its antitumor and antimetastatic effects in vitro and in vivo using the MTT assay, colony formation assays, migration assay, flow cytometric analysis, a tumor xenograft model, the KrasG12D/+ -driven spontaneous lung tumorigenesis model, and a spontaneous metastasis model using Lewis lung carcinoma (LLC) allografts. We also determined the toxicity of LL6 in vitro and in vivo. Results: LL6 induced apoptosis and suppressed viability and colony-forming capacities of various non-small cell lung cancer (NSCLC) cell lines and their sublines with drug resistance. LL6 also suppressed the migration of NSCLC cells at nontoxic doses. Administration of LL6 in mice significantly suppressed the growth of NSCLC xenograft tumors and metastasis of LLC allograft tumors with outstanding toxicity profiles. Furthermore, the multiplicity, volume, and load of lung tumors in KrasG12D/+ transgenic mice were substantially reduced by the LL6 treatment. Conclusions: Our results show the potential of LL6 as a novel IGF-1R/Src/AXL-targeting small molecule kinase inhibitor, providing a new avenue for anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Pirimidinas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
7.
Chem Sci ; 12(2): 626-631, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34163793

RESUMO

Ellman's reagent has caused substantial confusion and concern as a probe for thiol-mediated uptake because it is the only established inhibitor available but works neither efficiently nor reliably. Here we use fluorescent cyclic oligochalcogenides that enter cells by thiol-mediated uptake to systematically screen for more potent inhibitors, including epidithiodiketopiperazines, benzopolysulfanes, disulfide-bridged γ-turned peptides, heteroaromatic sulfones and cyclic thiosulfonates, thiosulfinates and disulfides. With nanomolar activity, the best inhibitors identified are more than 5000 times better than Ellman's reagent. Different activities found with different reporters reveal thiol-mediated uptake as a complex multitarget process. Preliminary results on the inhibition of the cellular uptake of pseudo-lentivectors expressing SARS-CoV-2 spike protein do not exclude potential of efficient inhibitors of thiol-mediated uptake for the development of new antivirals.

8.
Org Biomol Chem ; 16(12): 2105-2113, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29511752

RESUMO

A mild metal-free approach to 1,3,4-oxadiazol-2(3H)-ones via 1,3,4-oxadiazin-5(6H)-ones is described. This novel transformation, promoted by the electron-withdrawing p-substituents on the phenyl group at the α-carbonyl position, features a tandem reaction consisting of oxidative hydroxylation and C-C bond cleavage using molecular oxygen. The method utilizes K2CO3 in CH3CN without any oxidants, transition metals, or additives, enabling the tunable synthesis of 1,3,4-oxadiazin-5(6H)-ones, 1,3,4-oxadiazol-2(3H)-ones, and α-ketoamides under mild aerobic conditions.

9.
Eur J Med Chem ; 148: 116-127, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29454916

RESUMO

To achieve efficient photodynamic activity, substantial effort has been dedicated to precise control of the intracellular localization of current photosensitizers (PSs). Given the extremely small radius of action of singlet oxygen, the direct targeting of PSs to the mitochondria is expected to greatly enhance the photodynamic therapy (PDT) activity. Here, we report mitochondria-targeting 6-(furan-2-yl)- and 6-(thiophen-2-yl) indolizino[3,2-c]quinolines (IQs) as novel PSs. IQ derivatives containing 5-membered heterocyclic aromatic rings were synthesized, and their photophysical properties as PSs were characterized. The anticancer potentials of 2a-2f were investigated using various cancer cell lines, and they exhibited dose-dependent and light exposure time-dependent cytotoxicity. Among the synthesized compounds, 2b, which contains a furan ring, showed dual functions as an imaging probe as well as a PS. Real-time confocal fluorescence images revealed the mitochondrial localization of 2b as a primary site of photodamage in live cells. Targeted reactive oxygen species (ROS)-generation capabilities and the photoinduced DNA cleavage of IQs led to mitochondrial dysfunction and photoinduced apoptosis via the intrinsic pathway. 3D RI tomograms of individual live HeLa cells treated with 2b showed that the progress of photoinduced apoptosis was affected by the PS concentration and light irradiation time. The studied IQs (2b, 2d, and 2e) are expected to serve as a new class of heavy-atom-free PSs with low molecular weights less than 350.


Assuntos
Mitocôndrias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Quinolinas/síntese química , Antineoplásicos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Furanos , Células HeLa , Humanos , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Espécies Reativas de Oxigênio
10.
Molecules ; 21(3): 339, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26978334

RESUMO

Peptoids, N-substituted glycine oligomers, are versatile peptidomimetics with diverse biomedical applications. However, strategies to the development of novel fluorescent peptoids as chemical sensors have not been extensively explored, yet. Here, we synthesized a novel peptoid-based fluorescent probe in which a coumarin moiety was incorporated via copper(I)-catalyzed azide-alkyne cycloaddition reaction. Fluorescence of the newly generated coumarin-peptoid was dramatically quenched upon coordination of the Cu(2+) ion, and the resulting peptoid-Cu(2+) complex exhibited significant Turn-ON fluorescence following the addition of CN(-). The rapid and reversible response, combined with cyanide selectivity of the synthesized peptoid, reflects a multistep photo-process and supports its utility as a new type of CN(-) sensor.


Assuntos
Cianetos/química , Fluorescência , Corantes Fluorescentes/química , Peptoides/química , Cobre/química , Cumarínicos/química , Peptoides/síntese química , Análise Espectral/métodos
11.
Oncotarget ; 6(38): 40598-610, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26515601

RESUMO

The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/química , Oxazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxazinas/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
12.
Bioorg Med Chem Lett ; 25(22): 5444-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26392052

RESUMO

A series of novel STAT3 inhibitors consisting of Michael acceptor has been identified through assays of the focused in-house library. In addition, their mode of action and structural feature responsible for the STAT3 inhibition were investigated. In particular, analog 6 revealed promising STAT3 inhibitory activity in HeLa cell lines. The analog also exhibited selective inhibition of STAT3 phosphorylation without affecting STAT1 phosphorylation and cytostatic effect in human breast epithelial cells (MCF10A-ras), which supports cancer cell-specific inhibitory properties.


Assuntos
Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Immunoblotting , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...