Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 17(6): e202400049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634340

RESUMO

Photocytotoxicity represents a significant limitation in the application of dye-assisted fluorescence imaging (FI), often resulting in undesirable cellular damage or even cell death, thereby restricting their practical utility. The prevalence of Rhodamine B (RhB) in FI underscores the importance of elucidating its photocytotoxicity effects to minimize photodamage. This study identifies the primary cause of photocytotoxicity stems from the generation of cytotoxic singlet oxygen in RhB, utilizing femtosecond transient absorption spectroscopy coupled with quantum chemical calculations. The Laser power-dependent cellular viability reveals a threshold at about 50 mW cm-2, surpassing which produces pronounced photocytotoxicity in vitro and in vivo. Notably, this threshold significantly falls below the safety limits (<200 mW cm-2) for laser use in health care, implying a huge risk of photodamage. This study provides valuable insights into the photocytotoxicity and offers essential guidelines for developing safer imaging protocols.


Assuntos
Sobrevivência Celular , Imagem Óptica , Rodaminas , Rodaminas/química , Animais , Humanos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Segurança , Luz , Oxigênio Singlete/metabolismo
2.
Chem Rev ; 122(1): 1127-1207, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34780169

RESUMO

The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.


Assuntos
Catálise
3.
Nanomicro Lett ; 13(1): 172, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34383132

RESUMO

Thanks to the excellent optoelectronic properties, lead halide perovskites (LHPs) have been widely employed in high-performance optoelectronic devices such as solar cells and light-emitting diodes. However, overcoming their poor stability against water has been one of the biggest challenges for most applications. Herein, we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr3 nanocrystals (NCs). The as-prepared NCs sustain their superior photoluminescence (91% quantum yield in water) for more than 200 days in an aqueous environment, which is attributed to a passivation effect induced by excess CsBr salts. Thanks to the ultra-stability of these LHP NCs, for the first time, we report a new application of LHP NCs, in which they are applied to electrocatalysis of CO2 reduction reaction. Noticeably, they show significant electrocatalytic activity (faradaic yield: 32% for CH4, 40% for CO) and operation stability (> 350 h).

4.
J Chem Phys ; 150(11): 114704, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30902002

RESUMO

Doubly resonant infrared-visible sum-frequency generation (DR-IVSFG) spectroscopy, encompassing coupled vibrational and electronic transitions, provides a powerful method to gain a deep understanding of nuclear motion in photoresponsive surface adsorbates and interfaces. Here, we use DR-IVSFG to elucidate the role of vibronic coupling in a surface-confined donor-acceptor substituted azobenzene. Our study reveals some unique features of DR-IVSFG that have not been previously reported. In particular, vibronic coupling resulted in prominent SFG signal enhancement of selective stretching modes that reveal electronic properties of coexisting photochromic isomers. Our analysis explores two concepts: (1) In partially isomerized azobenzene at the surface, coupling of the fundamental vibrations to the S0 → S1 transition is more prominent for the cis isomer due to symmetry breaking, whereas coupling to the S0 → S2 transition was dominant in the trans isomer. (2) A strong coupling between the fundamental vibrations and the valence π-electron density, promoted by the initial absorption of an infrared photon, may result in suppression of the intensity of the hot band vibronic transition. This may translate into a suppressed sum-frequency generation signal at sum frequency wavelengths resonant with the S0 → S2 transition of the trans isomer. The weaker coupling of the fundamental vibrations to the non-bonding electron density localized on the azo group can therefore produce detectable sum-frequency generation at the resonance wavelength of the weaker S0 → S1 transition in the cis form. These results are explained in the framework of a linear coupling model, involving both Franck-Condon and Herzberg-Teller coupling terms. Our theoretical analysis reveals the important role played by molecular conformation, orientation, and vibronic interference in DR-SFG spectroscopy.

5.
ACS Appl Mater Interfaces ; 10(39): 33640-33651, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30185023

RESUMO

Here, we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface. Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated into one of two well-studied peptide sequences with known affinity for Au, each at one of three different positions: the N- or C-terminus or mid-sequence. Changes in the photoswitch isomerization state induce a reversible structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations, respectively, however, positioning the photoswitch at the C-terminus gives rise to a unique system that is reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental basis for new directions in nanoparticle catalyst development to control activity in real time, which could have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally, such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Catálise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
6.
Nano Lett ; 18(8): 4922-4926, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29936831

RESUMO

Applications of multiphoton processes in lanthanide-doped nanophosphors (NPs) are often limited by relatively weak and narrow absorbance. Here, the concept of an ultimate photosensitization by aggregation-induced enhanced emission (AIEE) dyes to overcome this limitation is introduced. Because AIEE dyes do not suffer from concentration quenching, they can fully cover the NP surface at high density to maximize absorbance while passivating the surface. This concept is applied to multiphoton down-conversion by quantum cutting. Specifically, coating Yb3+/Tb3+-doped NPs with an AIEE dye designed for efficient energy transfer and attachment to the NPs produces a 2260-fold enhancement of multiphoton down-conversion by quantum cutting with remarkable photostability. In a prototypical application, the quantum cutting of UV photons to near-infrared photons that are matched to the band gap of a silicon solar cell produces an average 4% increase in efficiency under concentrated solar illumination. This provides a general strategy for NP photosensitization that can be applied to both multiphoton up- and down-conversion.

7.
Phys Chem Chem Phys ; 18(44): 30845-30856, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27801441

RESUMO

Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides' ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showed a clustering behavior that was not typically observed without both metals and the linker molecules. While TEM evidence suggested the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.

8.
ACS Nano ; 10(10): 9470-9477, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27666415

RESUMO

We introduce here a concept of remote photoinitiated reconfiguration of ligands adsorbed onto a nanocatalyst surface to enable reversible modulation of the catalytic activity. This is demonstrated by using peptide-ligand-capped Au nanoparticles with a photoswitchable azobenzene unit integrated into the biomolecular ligand. Optical switching of the azobenzene isomerization state drives rearrangement of the ligand layer, substantially changing the accessibility and subsequent catalytic activity of the underlying metal surface. The catalytic activity was probed using 4-nitrophenol reduction as a model reaction, where both the position of the photoswitch in the peptide sequence and its isomerization state affected the catalytic activity of the nanoparticles. Reversible switching of the isomerization state produces reversible changes in catalytic activity via reconfiguration of the biomolecular overlayer. These results provide a pathway to catalytic materials whose activity can be remotely modulated, which could be important for multistep chemical transformations that can be accessed via nanoparticle-based catalytic systems.

10.
Nano Lett ; 16(9): 5451-5, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27518762

RESUMO

We report the first example of tuning the large magneto-optic activity of a chiral polymer by addition of stable organic biradicals. The spectral dispersion of Verdet constant, which quantifies magneto-optic response, differs substantially between the base polymer and the nanocomposite. We employed a microscopic model, supported by atomistic calculations, to rationalize the behavior of this nanocomposite system. The suggested mechanism involves magnetic coupling between helical conjugated polymer fibrils, with spatially delocalized helical π-electron density, and the high density of spin states provided by the biradical dopants, which leads to synergistic enhancement of magneto-optic response. Our combined experimental and theoretical studies reveal that the manipulation of magnetic coupling in this new class of magneto-optic materials offers an opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths, from the UV to the near-IR. This provides a new strategy for creating conformable materials with extraordinary magneto-optic activity, which can ultimately enable new applications requiring spatially and temporally resolved measurement of extremely weak magnetic fields. In particular, magneto-optic materials, presently employed in technologies like optical isolators and optical circulators, could be used in ultrasensitive optical magnetometers. This, in turn, could open a path toward mapping of brain activity via optical magnetoencephalography.

11.
Sci Rep ; 6: 28483, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27339882

RESUMO

Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.


Assuntos
Sondas Moleculares/química , Organelas/fisiologia , Análise Espectral Raman/métodos , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Células HeLa , Humanos , Lisossomos/fisiologia
12.
Nanoscale ; 8(7): 4194-202, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26830974

RESUMO

Two-photon initiated photo-isomerization of an azobenzene moiety adsorbed on silver nanoparticles (Ag NPs) is demonstrated. The azobenzene is linked to a materials-binding peptide that brings it into intimate contact with the Ag NP surface, producing a dramatic enhancement of its two-photon absorbance. An integrated modeling approach, combining advanced conformational sampling with Quantum Mechanics/Capacitance Molecular Mechanics and response theory, shows that charge transfer and image charges in the Ag NP generate local fields that enhance two-photon absorption of the cis isomer, but not the trans isomer, of adsorbed molecules. Moreover, dramatic local field enhancement is expected near the localized surface plasmon resonance (LSPR) wavelength, and the LSPR band of the Ag NPs overlaps the azobenzene absorbance that triggers cis to trans switching. As a result, the Ag NPs enable two-photon initiated cis to trans isomerization, but not trans to cis isomerization. Confocal anti-Stokes fluorescence imaging shows that this effect is not due to local heating, while the quadratic dependence of switching rate on laser intensity is consistent with a two-photon process. Highly localized two-photon initiated switching could allow local manipulation near the focal point of a laser within a 3D nanoparticle assembly, which cannot be achieved using linear optical processes.

13.
Biomaterials ; 84: 111-118, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826300

RESUMO

H2O2-specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (∼26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation-induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis.


Assuntos
Inflamação/patologia , Medições Luminescentes/métodos , Nanopartículas/química , Polímeros/química , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxalatos/química , Polímeros/síntese química
14.
ACS Appl Mater Interfaces ; 8(1): 1050-60, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26684587

RESUMO

Photoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.


Assuntos
Compostos Azo/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Prata/química , Adsorção , Isomerismo , Cinética , Ligantes , Luz , Nanopartículas Metálicas/ultraestrutura , Técnicas de Microbalança de Cristal de Quartzo , Espectrofotometria Ultravioleta , Termodinâmica
15.
Chem Commun (Camb) ; 52(6): 1131-4, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26549622

RESUMO

The precise detection of endogenous H2O2 has been considered to be a useful tool for understanding cell physiology. Here, we have developed a nanoreactor co-incorporated with a H2O2-responsive fluorogenic molecule and a catalytic additive. The fast sensing kinetics allows us to visualize a subcellular response in real-time.


Assuntos
Reatores Biológicos , Peróxido de Hidrogênio/metabolismo , Nanotecnologia , Linhagem Celular , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência
16.
ACS Nano ; 9(10): 9906-11, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26316392

RESUMO

Sensitive imaging of inflammation with a background-free chemiluminescence (CL) signal has great potential as a clinically relevant way of early diagnosis for various inflammatory diseases. However, to date, its feasibility has been limitedly demonstrated in vivo with locally induced inflammation models by in situ injection of CL probes. To enable systemic disease targeting and imaging by intravenous administration of CL probes, hurdles need to be overcome such as weak CL emission, short glowing duration, or inability of long blood circulation. Here, we report a CL nanoprobe (BioNT) that surmounted such limitations to perform precise identification of inflammation by systemic self-delivery to the pathological tissues. This BioNT probe was engineered by physical nanointegration of multiple kinds of functional molecules into the ultrafine nanoreactor structure (∼15 nm in size) that combines solid-state fluorescence-induced enhanced peroxalate CL and built-in machinery to control the intraparticle kinetics of CL reaction. Upon intravenous injection into a normal mouse, BioNT showed facile blood circulation and generated a self-lighted strong CL torchlight throughout the whole body owing to the tiny colloidal structure with an antifouling surface as well as high CL sensitivity toward endogenous biological hydrogen peroxide (H2O2). In mouse models of local and systemic inflammations, blood-injected BioNT visualized precise locations of inflamed tissues with dual selectivity (selective probe accumulation and selective CL reaction with H2O2 overproduced by inflammation). Even a tumor model that demands a long blood circulation time for targeting (>3 h) could be accurately identified by persistent signaling from the kinetics-tailored BioNT with a 65-fold slowed CL decay rate. We also show that BioNT exhibits no apparent toxicity, thus holding potential for high-contrast diagnostic imaging.


Assuntos
Artrite/diagnóstico , Peróxido de Hidrogênio/análise , Inflamação/diagnóstico , Substâncias Luminescentes/química , Nanopartículas/química , Imagem Óptica/métodos , Animais , Artrite/imunologia , Peróxido de Hidrogênio/imunologia , Inflamação/imunologia , Luminescência , Medições Luminescentes/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
17.
Nanoscale ; 7(32): 13638-45, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26205625

RESUMO

Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Nanotecnologia/métodos , Compostos Azo/química , Ligantes , Conformação Molecular , Propriedades de Superfície
18.
Biomaterials ; 53: 25-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890703

RESUMO

Raman microspectroscopy is one of the most powerful tools in molecular sensing, offering a non-invasive and comprehensive characterization of the intracellular environment. To analyze and monitor molecular content in specific cellular compartments, different parts of cellular architecture must be unambiguously identified to guide Raman image/spectra acquisition. In this regards, the development of Raman molecular probes, producing spectrally distinct and intense signal is of outmost practical importance. Here we report on a new generation of Raman molecular probes, designed for application in live cells and immuno-labeling, capable of providing unprecedentedly high detection sensitivity through Resonance Raman (RR) enhancement. In contrast to existing Raman markers, the proposed RR reporter is designed to produce RR enhancement under excitation in the visible spectral range, far away from absorption of cellular biomolecules. We show that this concept allows for facile identification of labeled cellular domains, simultaneously with mapping of the macromolecules using spontaneous Raman technique. We demonstrate the breakthrough potential of these RR probes for selective labeling and rapid Raman imaging of membranes as well as mitochondria in live cells. We also show that these resonant Raman probes open the way for Raman-based intracellular immuno-labeling.


Assuntos
Sondas Moleculares , Organelas/metabolismo , Análise Espectral Raman/métodos
19.
Adv Mater ; 25(39): 5574-80, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23847108

RESUMO

Nanoscopic dense integration between solid-state emission and photochromism provides nanoprobes capable of photoswitching of bright NIR fluorescence with high on/off contrast, bistability and improved signal identification, being suitable for imaging applications in autofluorescence-rich in vivo environments.


Assuntos
Raios Infravermelhos , Nanoestruturas/química , Imagem Óptica/métodos , Polímeros/química , Animais , Galinhas , Camundongos , Polímeros/toxicidade , Ratos
20.
Biomaterials ; 34(28): 6846-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23777911

RESUMO

Coordination polymer gels have been recognized as promising hybrid nanoplatforms for imaging and therapeutic applications. Here we report functional metal-organic coordinated nanogels (GdNGs) for in vivo tumor imaging, whose non-crystalline and elastic nature allows for long blood circulation, as opposed to the rapid systemic clearance of common nanohybrids with rigid/crystalline frameworks. The deformable structure of GdNGs was constructed by random crosslinking of highly flexible polyethyleneimines (PEI) with gadolinium (Gd(3+)) coordination. The in vitro characterization revealed that GdNGs have elasticity with an apparent Young's modulus of 3.0 MPa as well as minimal cytotoxicity owing to the tight chelation of Gd(3+) ions. In contrast to common T1-enhancing gadolinium complexes, GdNGs showed the capability of enhancing negative T2 contrast (r2 = 82.6 mm(-1)s(-1)) due to the Gd(3+)-concentrated nanostructure. Systemic administration of fluorescently labeled GdNGs with core and overall hydrodynamic sizes of ~65 and ~160 nm manifested efficient targeting and dual-modality (magnetic resonance/fluorescence) imaging of tumor in a mouse model. The minimal filtration by the reticuloendothelial system (RES) suggests that the structural deformability helps the large colloids circulate in the blood stream for tumor accumulation. The unusual performance of a large Gd(3+)-complexed colloid (minimal RES sequestration and high T2 contrast enhancement) represents the versatile nature of nanoscopic organic-inorganic hybridization for biomedical applications.


Assuntos
Meios de Contraste/química , Diagnóstico por Imagem/métodos , Gadolínio/química , Neoplasias/diagnóstico , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Nus , Nanogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...