Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15461, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104374

RESUMO

Human host-associated microbial communities in body sites can reflect health status based on the population distribution and specific microbial properties in the heterogeneous community. Bacteria identification at the single-cell level provides a reliable biomarker and pathological information for clinical diagnosis. Nevertheless, biosamples obtained from some body sites cannot offer sufficient sample volume and number of target cells as required by most of the existing single-cell isolation methods such as flow cytometry. Herein we report a novel integrated microfluidic system, which consists of a microemulsion module for single-bacteria encapsulation and a sequential microdroplet capture and release module for selectively extracting only the single-bacteria encapsulated in microdroplets. We optimize the system for a success rate of the single-cell extraction to be > 38%. We further verify applicability of the system with prepared cell mixtures (Methylorubrum extorquens AM1 and Methylomicrobium album BG8) and biosamples collected from human skin, to quantify the population distribution of multiple key species in a heterogeneous microbial community. Results indicate perfect viability of the single-cell extracts and compatibility with downstream analyses such as PCR. Together, this research demonstrates that the reported single-bacteria extraction system can be applied in microbiome and pathology research and clinical diagnosis as a clinical or point-of-care device.


Assuntos
Bactérias , Microbiota , Separação Celular , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase
2.
mSystems ; 7(2): e0007322, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35258342

RESUMO

Methylomicrobium album BG8 is an aerobic methanotrophic bacterium with promising features as a microbial cell factory for the conversion of methane to value-added chemicals. However, the lack of a genome-scale metabolic model (GEM) of M. album BG8 has hindered the development of systems biology and metabolic engineering of this methanotroph. To fill this gap, a high-quality GEM was constructed to facilitate a system-level understanding of the biochemistry of M. album BG8. Flux balance analysis, constrained with time-series data derived from experiments with various levels of methane, oxygen, and biomass, was used to investigate the metabolic states that promote the production of biomass and the excretion of carbon dioxide, formate, and acetate. The experimental and modeling results indicated that M. album BG8 requires a ratio of ∼1.5:1 between the oxygen- and methane-specific uptake rates for optimal growth. Integrative modeling revealed that at ratios of >2:1 oxygen-to-methane uptake flux, carbon dioxide and formate were the preferred excreted compounds, while at ratios of <1.5:1 acetate accounted for a larger fraction of the total excreted flux. Our results showed a coupling between biomass production and the excretion of carbon dioxide that was linked to the ratio between the oxygen- and methane-specific uptake rates. In contrast, acetate excretion was experimentally detected during exponential growth only when the initial biomass concentration was increased. A relatively lower growth rate was also observed when acetate was produced in the exponential phase, suggesting a trade-off between biomass and acetate production. IMPORTANCE A genome-scale metabolic model (GEM) is an integrative platform that enables the incorporation of a wide range of experimental data. It is used to reveal system-level metabolism and, thus, clarify the link between the genotype and phenotype. The lack of a GEM for Methylomicrobium album BG8, an aerobic methane-oxidizing bacterium, has hindered its use in environmental and industrial biotechnology applications. The diverse metabolic states indicated by the GEM developed in this study demonstrate the versatility in the methane metabolic processes used by this strain. The integrative GEM presented here will aid the implementation of the design-build-test-learn paradigm in the metabolic engineering of M. album BG8. This advance will facilitate the development of a robust methane bioconversion platform and help to mitigate methane emissions from environmental systems.


Assuntos
Dióxido de Carbono , Metano , Metano/metabolismo , Formiatos , Oxigênio
3.
Nano Energy ; 85: 106015, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571102

RESUMO

Face masks have been an effective and indispensable personal protective measure against particulate matter pollutants and respiratory diseases, especially the novel Coronavirus disease recently. However, disposable surgical face masks suffer from low filtration efficiency for particles ranging from nano- to micro-size, and the limited service life of ~ 4 h. Here, a nano/micro fibrous hybrid air filter mask composing of electrospun nanofibrous network and poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) coated polypropylene (PP) is proposed. Furthermore, the resultant filter is supplied with tribo-charges by a freestanding sliding triboelectric nanogenerator. Through the enhanced synergistic effect of mechanical interception and electrostatic forces, the hybrid air filter demonstrates high filtration efficiency for particle size of 11.5 nm to 2.5 µm, with a 9.3-34.68% enhancement for particles of 0.3-2.5 µm compared to pristine PP, and 48-h stable filtration efficiency of 94% (0.3-0.4 µm) and 99% (1-2.5 µm) with a low pressure drop of ~110 Pa. In addition, sterilization ability of the tribo-charge enhanced air filter is demonstrated. This work provides a facile and cost-effective approach for state-of-the-art face masks toward high filtration performance of nano- to micro- particles with greatly extended service life.

4.
Microorganisms ; 8(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397339

RESUMO

The ammonia-oxidizing obligate aerobic chemolithoautotrophic gammaproteobacterium, Nitrosococcus oceani, is omnipresent in the world's oceans and as such important to the global nitrogen cycle. We generated and compared high quality draft genome sequences of N. oceani strains isolated from the Northeast (AFC27) and Southeast (AFC132) Pacific Ocean and the coastal waters near Barbados at the interface between the Caribbean Sea and the North Atlantic Ocean (C-27) with the recently published Draft Genome Sequence of N. oceani Strain NS58 (West Pacific Ocean) and the complete genome sequence of N. oceani C-107, the type strain (ATCC 19707) isolated from the open North Atlantic, with the goal to identify indicators for the evolutionary origin of the species. The genomes of strains C-107, NS58, C-27, and AFC27 were highly conserved in content and synteny, and these four genomes contained one nearly sequence-identical plasmid. The genome of strain AFC132 revealed the presence of genetic inventory unknown from other marine ammonia-oxidizing bacteria such as genes encoding NiFe-hydrogenase and a non-ribosomal peptide synthetase (NRPS)-like siderophore biosynthesis module. Comparative genome analysis in context with the literature suggests that AFC132 represents a metabolically more diverse ancestral lineage to the other strains with C-107 and NS58 potentially being the youngest. The results suggest that the N. oceani species evolved by genome economization characterized by the loss of genes encoding catabolic diversity while acquiring a higher redundancy in inventory dedicated to nitrogen catabolism, both of which could have been facilitated by their rich complements of CRISPR/Cas and Restriction Modification systems.

5.
Front Microbiol ; 10: 1027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143170

RESUMO

Methylorubrum extorquens (formerly Methylobacterium extorquens) AM1 is a methylotrophic bacterium with a versatile lifestyle. Various carbon sources including acetate, succinate and methanol are utilized by M. extorquens AM1 with the latter being a promising inexpensive substrate for use in the biotechnology industry. Itaconic acid (ITA) is a high-value building block widely used in various industries. Given that no wildtype methylotrophic bacteria are able to utilize methanol to produce ITA, we tested the potential of M. extorquens AM1 as an engineered host for this purpose. In this study, we successfully engineered M. extorquens AM1 to express a heterologous codon-optimized gene encoding cis-aconitic acid decarboxylase. The engineered strain produced ITA using acetate, succinate and methanol as the carbon feedstock. The highest ITA titer in batch culture with methanol as the carbon source was 31.6 ± 5.5 mg/L, while the titer and productivity were 5.4 ± 0.2 mg/L and 0.056 ± 0.002 mg/L/h, respectively, in a scaled-up fed-batch bioreactor under 60% dissolved oxygen saturation. We attempted to enhance the carbon flux toward ITA production by impeding poly-ß-hydroxybutyrate accumulation, which is used as carbon and energy storage, via mutation of the regulator gene phaR. Unexpectedly, ITA production by the phaR mutant strain was not higher even though poly-ß-hydroxybutyrate concentration was lower. Genome-wide transcriptomic analysis revealed that phaR mutation in the ITA-producing strain led to complex rewiring of gene transcription, which might result in a reduced carbon flux toward ITA production. Besides poly-ß-hydroxybutyrate metabolism, we found evidence that PhaR might regulate the transcription of many other genes including those encoding other regulatory proteins, methanol dehydrogenases, formate dehydrogenases, malate:quinone oxidoreductase, and those synthesizing pyrroloquinoline quinone and thiamine co-factors. Overall, M. extorquens AM1 was successfully engineered to produce ITA using acetate, succinate and methanol as feedstock, further supporting this bacterium as a feasible host for use in the biotechnology industry. This study showed that PhaR could have a broader regulatory role than previously anticipated, and increased our knowledge of this regulator and its influence on the physiology of M. extorquens AM1.

6.
Front Microbiol ; 9: 2493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420840

RESUMO

Copper membrane monooxygenases (CuMMOs) oxidize ammonia, methane and some short-chain alkanes and alkenes. They are encoded by three genes, usually in an operon of xmoCAB. We aligned xmo operons from 66 microbial genomes, including members of the Alpha-, Beta-, and Gamma-proteobacteria, Verrucomicrobia, Actinobacteria, Thaumarchaeota and the candidate phylum NC10. Phylogenetic and compositional analyses were used to reconstruct the evolutionary history of the enzyme and detect potential lateral gene transfer (LGT) events. The phylogenetic analyses showed at least 10 clusters corresponding to a combination of substrate specificity and bacterial taxonomy, but with no overriding structure based on either function or taxonomy alone. Adaptation of the enzyme to preferentially oxidize either ammonia or methane has occurred more than once. Individual phylogenies of all three genes, xmoA, xmoB and xmoC, closely matched, indicating that this operon evolved or was consistently transferred as a unit, with the possible exception of the methane monooxygenase operons in Verrucomicrobia, where the pmoB gene has a distinct phylogeny from pmoA and pmoC. Compositional analyses indicated that some clusters of xmoCAB operons (for example, the pmoCAB in gammaproteobacterial methanotrophs and the amoCAB in betaproteobacterial nitrifiers) were compositionally very different from their genomes, possibly indicating recent lateral transfer of these operons. The combined phylogenetic and compositional analyses support the hypothesis that an ancestor of the nitrifying bacterium Nitrosococcus was the donor of methane monooxygenase (pMMO) to both the alphaproteobacterial and gammaproteobacterial methanotrophs, but that before this event the gammaproteobacterial methanotrophs originally possessed another CuMMO (Pxm), which has since been lost in many species.

7.
Front Microbiol ; 9: 280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535685

RESUMO

Nitrification plays a crucial role in global nitrogen cycling and treatment processes. However, the relationships between the nitrifier guilds of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) are still poorly understood, especially in freshwater habitats. This study examined the physiological interactions between the AOB and NOB present in a freshwater aquarium biofilter by culturing them, either together or separately, in a synthetic medium. Metagenomic and 16S rRNA gene sequencing revealed the presence and the draft genomes of Nitrosomonas-like AOB as well as Nitrobacter-like NOB in the cultures, including the first draft genome of Nitrobacter vulgaris. The nitrifiers exhibited different growth rates with different ammonium (NH4+) or nitrite concentrations (50-1,500 µM) and the growth rates were elevated under a high bicarbonate (HCO3-) concentration. The half-saturation constant (Ks for NH4+), the maximum growth rate (µmax), and the lag duration indicated a strong dependence on the synergistic relationships between the two guilds. Overall, the ecophysiological and metagenomic results in this study provided insights into the phylogeny of the key nitrifying players in a freshwater biofilter and showed that interactions between the two nitrifying guilds in a microbial community enhanced nitrification.

8.
PLoS One ; 11(7): e0159884, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442435

RESUMO

Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Pseudomonas/genética , Antibacterianos/farmacologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Ácido Salicílico/metabolismo , Tiazóis/metabolismo , Transcrição Gênica
9.
Front Microbiol ; 7: 512, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148201

RESUMO

An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4(T). The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100-200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28-32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance.

10.
Int J Syst Evol Microbiol ; 65(Pt 1): 242-250, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25336720

RESUMO

A Gram-negative, spiral-shaped, chemolithotrophic, ammonia-oxidizing bacterium, designated APG3(T), was isolated into pure culture from sandy lake sediment collected from Green Lake, Seattle, WA, USA. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain APG3(T) belongs to cluster 0 of the genus Nitrosospira, which is presently not represented by described species, with Nitrosospira multiformis (cluster 3) as the closest species with a validly published name (identity of 98.6 % to the type strain). Strain APG3(T) grew at 4 °C but could not grow at 35 °C, indicating that this bacterium is psychrotolerant. Remarkably, the strain was able to grow over a wide range of pH (pH 5-9), which was greater than the pH range of any studied ammonia-oxidizing bacteria in pure culture. The DNA G+C content of the APG3(T) genome is 53.5 %, which is similar to that of Nitrosospira multiformis ATCC 25196(T) (53.9 %) but higher than that of Nitrosomonas europaea ATCC 19718 (50.7 %) and Nitrosomonas eutropha C71 (48.5 %). The average nucleotide identity (ANI) calculated for the genomes of strain APG3(T) and Nitrosospira multiformis ATCC 25196(T) was 75.45 %, significantly lower than the value of 95 % ANI that corresponds to the 70 % species-level cut-off based on DNA-DNA hybridization. Overall polyphasic taxonomy study indicated that strain APG3(T) represents a novel species in the genus Nitrosospira, for which the name Nitrosospira lacus sp. nov. is proposed (type strain APG3(T) = NCIMB 14869(T) = LMG 27536(T) = ATCC BAA-2542(T)).


Assuntos
Amônia/metabolismo , Lagos/microbiologia , Nitrosomonadaceae/classificação , Filogenia , Composição de Bases , DNA Bacteriano/genética , Dados de Sequência Molecular , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Appl Environ Microbiol ; 79(9): 3141-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435890

RESUMO

Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5.


Assuntos
Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Microbiologia do Solo , Taninos/farmacologia , Transcriptoma/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Rizosfera , Solo
12.
Environ Microbiol ; 15(3): 702-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22900619

RESUMO

Zinc is an important nutrient but can be lacking in some soil environments, influencing the physiology of soil-dwelling bacteria. Hence, we studied the global effect of zinc limitation on the transcriptome of the rhizosphere biocontrol strain Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens). We observed that the expression of the putative zinc uptake regulator (Zur) gene was upregulated, and we mapped putative Zur binding sites in the Pf-5 genome using bioinformatic approaches. In line with the need to regulate intracellular zinc concentrations, an array of potential zinc transporter genes was found to be zinc-regulated. To adapt to low-zinc conditions, a gene cluster encoding non-zinc-requiring paralogues of zinc-dependent proteins was also significantly upregulated. Similarly, transcription of genes encoding non-zinc-requiring paralogues of ribosomal proteins L31 and L36 was increased by zinc limitation. A strong transcriptional downregulation of the putative copper chaperone gene (copZ) was also observed, suggesting interplay between zinc and copper homeostasis. Importantly, zinc also affected biocontrol attributes in Pf-5, most notably reducing the expression of the gene cluster responsible for biosynthesis of the antibiotic 2,4-diacetylphloroglucinol (DAPG) under zinc limitation. This study clearly defines changes to the molecular physiology of Pf-5 that enable it to survive under zinc limitation.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas/genética , Pseudomonas/metabolismo , Transcriptoma , Zinco/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Análise Serial de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/genética , Microbiologia do Solo
13.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22792073

RESUMO

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Assuntos
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análise de Sequência de DNA , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidade Genética , Variação Genética , Interações Hospedeiro-Patógeno/genética , Insetos/genética , Família Multigênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas/genética , Plantas/microbiologia , Sequências Repetitivas de Ácido Nucleico/genética , Resorcinóis/metabolismo
14.
PLoS One ; 7(6): e39139, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723948

RESUMO

One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.


Assuntos
Ferro/metabolismo , Proteoma , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Transcriptoma , Proteínas de Bactérias/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Análise por Conglomerados , Transporte de Elétrons/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Metaboloma/genética , Mutação , Estresse Oxidativo , Pseudomonas fluorescens/crescimento & desenvolvimento , Proteínas Ribossômicas/genética , Sideróforos/metabolismo , Fator sigma/metabolismo
15.
Medicine and Health ; : 1-25, 2007.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-627359

RESUMO

Infection by hepatitis B virus (HBV) is a major global health-care problem. HBV is an accepted factor in the elevated risks for liver disease such as cirrhosis and development of hepatocellular carcinoma. This problem is particularly prevalent in the Asia-Pacific region which includes Malaysia. During infection, the hepatitis B e antigen (HBeAg) is produced in the hosts. This antigen is an important serological marker for diagnosing chronic hepatitis B. Seroconversion to anti-body (anti-HBe) corresponds to the improvement of disease prognosis. However, certain mutations such as the core promoter dual mutations (A1762G1764→T1762A1764), the codon 15 variants (C1858/ T1858) and the precore stop codon mutations (TGG→TAG) can affect the HBeAg expression. This has diagnostic and clinical implications. Besides that, the HBV can be grouped into eight genotypes (A to H). Moreover, genotypic subtypes and recombinants have been observed as well. Studies have observed that these can differ in their affiliations with the mutations above as well as with disease prognosis.


Assuntos
Antígenos E da Hepatite B
16.
Int J Med Sci ; 3(1): 14-20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16421626

RESUMO

This study was carried out to determine the effects of hepatitis B virus genotypes, core promoter mutations (A1762G1764-->T1762A1764) as well as precore stop codon mutations (TGG-->TAG) on HBeAg expression and HBeAg/ anti-HBe status. Study was also performed on the effects of codon 15 variants (C1858/ T1858) on the predisposition of precore stop codon mutations (TGG-->TAG). A total of 77 sera samples were analyzed. Fifty one samples were successfully genotyped of which the predominant genotype was genotype B (29/ 51, 56.9 %), followed by genotype C (16/ 51, 31.4 %). Co-infections by genotypes B and C were observed in four samples (7.8 %). To a lesser degree, genotypes D and E (2.0 % each) were also observed. For core promoter mutations, the prevalence was 68.8 % (53/ 77) for A1762G1764 wild-type and 14.3 % (11/ 77) for T1762A1764 mutant while 9.1 % (7/ 77) was co-infected by both strains. The prevalence of codon 15 variants was found to be 42.9 % (33/ 77) for T1858 variant and 16.9 % (13/ 77) for C1858 variant. No TAG mutation was found. In our study, no associations were found between genotypes (B and C) and core promoter mutations as well as codon 15 variants. Also no correlation was observed between HBeAg/ anti-HBe status with genotypes (B and C) and core promoter mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...