Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400128, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842537

RESUMO

Amid the bourgeoning demand for in-silico designed, environmentally sustainable, and highly effective hair care formulations, a growing interest is evident in the exploration of realistic computational model for the hair surface. In this work, we present an atomistic model for the outermost layer of the hair surface derived through molecular dynamics simulations, which comprises 18-Methyleicosanoic acid (18-MEA) fatty acid chains covalently bound onto the keratin-associated protein 10-4 (KAP10-4) at a spacing distance of ~1 nm. Remarkably, this hair surface model facilitates the inclusion of free fatty acids (free 18-MEA) into the gaps between chemically bound 18-MEA chains, up to a maximum number that results in a packing density of 0.22 nm2 per fatty acid molecule, consistent with the optimal spacing identified through free energy analysis. Atomistic insights are provided for the organization of fatty acid chains, structural features, and interaction energies on protein-inclusive hair surface models with varying amounts of free 18-MEA (FMEA) depletion, as well as varying degrees of anionic cysteic acid from damaged bound 18-MEA (BMEA), under both dry and wet conditions. In the presence of FMEA and water, the fatty acid chains in a pristine hair surface prefers to adopt a thermodynamically favored extended chain conformation, forming a thicker protective layer (~3 nm) on the protein surface. Our simulation results reveal that, while the depletion of FMEA can induce a pronounced impact on the thickness, tilt angle, and order parameters of fatty acid chains, the removal of BMEA has a marked effect on water penetration. There is a "sweet spot" spacing between the 18-MEA whereby damaged hair surface properties can be reinstated by replenishing FMEA. Through the incorporation of the protein layer and free fatty acids, the hair surface models presented in this study enables a realistic representation of the intricate details within the hair epicuticle, facilitating a molecular scale assessment of surface properties during the formulation design process.

2.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112153, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673306

RESUMO

Sugar-based surfactants are involved in skin related allergy cases in the past decade. Skin irritation starts with the interaction of the surfactant with the skin lipids leading to lipid emulsification and eventual barrier damage. Polymers or co-surfactants can be used to mitigate the allergenic effect but the mechanism of formulation mildness on skin remains unclear. We have used the quartz crystal microbalance (QCM) together with dissipative particle dynamics (DPD) simulation, small angle x-ray scattering (SAXS) as well as cell viability tests to decipher the interactions between poloxamers and sucrose monolaurate (SML), and how these interactions could prevent the disruption of a model supported phospholipid bilayer (SLB). Poloxamer addition to the SML solution can delay or totally prevent the disruption of the SLB depending on poloxamer type and concentration. Poloxamer P407 (Pluronic® F127) delays the onset of disruption while poloxamer P188 (Pluronic® F68) does not preserve the bilayer integrity even at high concentration of up to 15% w/w. Preservation of the SLB is likely due to the differences in the aggregates formation between SML-F127 and SML-F68 mixtures with corresponding retarded motion of SML micelles through the SML-F127 polymer matrix that improved cell viability.


Assuntos
Poloxâmero , Tensoativos , Alérgenos , Fosfolipídeos , Espalhamento a Baixo Ângulo , Sacarose/análogos & derivados , Difração de Raios X
3.
Macromol Rapid Commun ; 41(21): e2000240, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32914462

RESUMO

A thorough experimental investigation of polymer-glass transition temperature (Tg ) is performed on poly(vinyl alcohol) (PVA) and fumed silica nanoparticle (SiNP) composite. This is done together with atomistic molecular dynamics simulations of PVA systems in contact with bare and fully hydroxylated silica. Experimentally, PVA-SiNP composites are prepared by simple solution casting from aqueous solutions followed by its characterization using Fourier-transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), and dynamic scanning calorimetry (DSC). Both theoretical and experimentally deduced Tg are correlated with the presence of hydrogen bonding interactions involving OH functionality present on the surface of SiNP and along PVA polymer backbone. Further deconvolution of FTIR data show that inter-molecular hydrogen bonding present between PVA and SiNP surface is directly responsible for the increase in Tg . SiNP filler and PVA matrix ratio is also optimized for a desired Tg increase. An optimal loading of SiNP exists, in order to yield the maximum Tg increase arising from the competition between hydrogen bonding and crowding effect of SiNP.


Assuntos
Nanocompostos , Álcool de Polivinil , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Polímeros , Dióxido de Silício , Temperatura de Transição
4.
Langmuir ; 33(18): 4461-4476, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28414245

RESUMO

The molecular structure of a surfactant molecule is known to have a great effect on the interfacial properties and the type of nanostructures formed. In this work, we have performed molecular dynamics simulations on six isomers of an alkyl benzenesulfonate surfactant to investigate the effect of the degree and position of aromatic substitution on the interfacial properties and on the collapse of the surfactant monolayer at a decane-water interface. The surface pressure of the monolayers was shown to increase with increasing surface coverage, until some of the monolayers become mechanically unstable and form large undulations. Shifting the primary alkyl chain of the surfactant from the para to the meta position was found to significantly affect the orientation of the surfactant head groups, while the attachment position of the benzene ring along the primary alkyl chain plays a greater role in the orientation of the surfactant tails. In general, to the extent considered in this work, our results suggest that additional alkyl substitution and meta substitution of the primary alkyl chains increase both the effectiveness and efficiency of the surfactants, and accelerate the onset of monolayer collapse. The interface was found to consist of an inner Helmholtz layer of partially dehydrated counterions in contact with the surfactant head groups, an outer Helmholtz layer of hydrated counterions, and a diffuse layer. The di- and trisubstituted surfactants formed nearly spherical swollen micelles encapsulating pure decane, which effectively solubilizes decane in water as a microemulsion. The monosubstituted surfactants formed elongated buds that protrude from the interface, but did not detach from the monolayer. To our knowledge, the role of aromatic substitution on interfacial properties has not been investigated by molecular simulations previously. The results from this work could provide insights to design improved surfactants by exploiting aromatic substitution to encapsulate material for drug delivery and other applications.

5.
Langmuir ; 28(36): 13008-17, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22891705

RESUMO

The epicuticle is the outermost layer of the human hair, and consists of a monolayer of fatty acids that is predominantly 18-methyleicosanoic acid (18-MEA) covalently bound to a protein matrix. Surprisingly, despite the clear scientific and industrial importance, the detailed molecular structure of this fatty acid layer is still poorly understood. In this work, we aim to gain insight into the structure of this so-called F-layer by performing molecular dynamics simulations on a simplified hair surface model consisting of a monolayer of 18-MEA covalently attached to graphene sheets at various separation distances. The relative free energy of the fatty acid layer was calculated as a function of separation distance in order to obtain the optimal packing density of the fatty acids. Conformational properties such as the thickness, tilt angle, and order parameter of the fatty acid layers were also calculated to characterize the structure of the F-layer. Simulations of the structurally similar eicosanoic acid (EA) were also performed as a comparison and to investigate the role of the anteiso-methyl side chain at the 18th position of 18-MEA. The degree of water penetration into the fatty acid layer at the various separation distances was also investigated. Our simulations suggest that the optimal spacing for the fatty acids is between 0.492 and 0.651 nm, in contrast to the generally accepted literature value of around 0.9-1.0 nm. This results in a packing density of between 0.21 and 0.37 nm(2) per fatty acid molecule and a thickness of around 2.01-2.64 nm. We also show that, at larger separation distances, the 18-MEA fatty acid provides a slightly better hydrophobic layer than the EA fatty acid, suggesting that the 18-MEA fatty acid may have been naturally selected to provide better protection for the hair when it loses some of the fatty acids due to daily wear and tear. To our knowledge, this is the first attempt to systematically investigate the hair surface structure and properties with molecular simulations.


Assuntos
Ácidos Eicosanoicos/química , Cabelo/química , Lipossomos/química , Simulação de Dinâmica Molecular , Humanos , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA