Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 3(9): 684-694, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285580

RESUMO

Massively parallel DNA sequencing is established, yet high-throughput protein profiling remains challenging. Here, we report a barcoding approach that leverages the combinatorial sequence content and the configurational programmability of DNA nanostructures for high-throughput multiplexed profiling of the subcellular expression and distribution of proteins in whole cells. The barcodes are formed by in situ hybridization of tetrahedral DNA nanostructures and short DNA sequences conjugated with protein-targeting antibodies, and by nanostructure-assisted ligation (either enzymatic or chemical) of the nanostructures and exogenous DNA sequences bound to nanoparticles of different sizes (which cause these localization sequences to differentially distribute across subcellular compartments). Compared with linear DNA barcoding, the nanostructured barcodes enhance the signal by more than 100-fold. By implementing the barcoding approach on a microfluidic device for the analysis of rare patient samples, we show that molecular subtypes of breast cancer can be accurately classified and that subcellular spatial markers of disease aggressiveness can be identified.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA/química , DNA/classificação , Perfilação da Expressão Gênica/métodos , Nanoestruturas , Anticorpos/imunologia , Anticorpos/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Código de Barras de DNA Taxonômico/instrumentação , Humanos , Cinética , Dispositivos Lab-On-A-Chip , Proteínas , Coloração e Rotulagem
2.
Theranostics ; 9(2): 311-323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809276

RESUMO

Motor neuron diversification and regionalization are important hallmarks of spinal cord development and rely on fine spatiotemporal release of molecular cues. Here, we present a dedicated platform to engineer complex molecular profiles for directed neuronal differentiation. Methods: The technology, termed microhexagon interlace for generation of versatile and fine gradients (microHIVE), leverages on an interlocking honeycomb lattice of microstructures to dynamically pattern molecular profiles at a high spatial resolution. By packing the microhexagons as a divergent, mirrored array, the platform not only enables maximal mixing efficiency but also maintains a small device footprint. Results: Employing the microHIVE platform, we developed optimized profiles of growth factors to induce rostral-caudal patterning of spinal motor neurons, and directed stem cell differentiation in situ into a spatial continuum of different motor neuron subtypes. Conclusions: The differentiated cells showed progressive RNA and protein signatures, consistent with that of representative brachial, thoracic and lumbar regions of the human spinal cord. The microHIVE platform can thus be utilized to develop advanced biomimetic systems for the study of diseases in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Microfluídica/métodos , Neurônios Motores/fisiologia , Células-Tronco/fisiologia , Técnicas de Cultura de Células/instrumentação , Humanos , Microfluídica/instrumentação
3.
Nat Commun ; 9(1): 3238, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104566

RESUMO

Rapid, visual detection of pathogen nucleic acids has broad applications in infection management. Here we present a modular detection platform, termed enzyme-assisted nanocomplexes for visual identification of nucleic acids (enVision). The system consists of an integrated circuit of enzyme-DNA nanostructures, which function as independent recognition and signaling elements, for direct and versatile detection of pathogen nucleic acids from infected cells. The built-in enzymatic cascades produce a rapid color readout for the naked eye; the assay is thus fast (<2 h), sensitive (<10 amol), and readily quantified with smartphones. When implemented on a configurable microfluidic platform, the technology demonstrates superior programmability to perform versatile computations, for detecting diverse pathogen targets and their virus-host genome integration loci. We further design the enVision platform for molecular-typing of infections in patient endocervical samples. The technology not only improves the clinical inter-subtype differentiation, but also expands the intra-subtype coverage to identify previously undetectable infections.


Assuntos
DNA/química , Peroxidase do Rábano Silvestre/metabolismo , Ácidos Nucleicos/análise , Papillomaviridae/genética , Bioensaio , Humanos , Nanoestruturas/química , Papillomaviridae/isolamento & purificação
4.
Lab Chip ; 15(20): 4032-43, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26329655

RESUMO

A truly practical lab-on-a-chip (LOC) system for point-of-care testing (POCT) hepatotoxicity assessment necessitates the embodiment of full-automation, ease-of-use and "sample-in-answer-out" diagnostic capabilities. To date, the reported microfluidic devices for POCT hepatotoxicity assessment remain rudimentary as they largely embody only semi-quantitative or single sample/gene detection capabilities. In this paper, we describe, for the first time, an integrated LOC system that is somewhat close to a practical POCT hepatotoxicity assessment device - it embodies both tissue sample preparation and multiplex real-time RT-PCR. It features semi-automation, is relatively easy to use, and has "sample-in-answer-out" capabilities for multiplex gene expression analysis. Our tissue sample preparation module incorporating both a microhomogenizer and surface-treated paramagnetic microbeads yielded high purity mRNA extracts, considerably better than manual means of extraction. A primer preloading surface treatment procedure and the single-loading inlet on our multiplex real-time RT-PCR module simplify off-chip handling procedures for ease-of-use. To demonstrate the efficacy of our LOC system for POCT hepatotoxicity assessment, we perform a preclinical animal study with the administration of cyclophosphamide, followed by gene expression analysis of two critical protein biomarkers for liver function tests, aspartate transaminase (AST) and alanine transaminase (ALT). Our experimental results depict normalized fold changes of 1.62 and 1.31 for AST and ALT, respectively, illustrating up-regulations in their expression levels and hence validating their selection as critical genes of interest. In short, we illustrate the feasibility of multiplex gene expression analysis in an integrated LOC system as a viable POCT means for hepatotoxicity assessment.


Assuntos
Métodos Analíticos de Preparação de Amostras/instrumentação , Regulação da Expressão Gênica , Dispositivos Lab-On-A-Chip , Fígado/efeitos dos fármacos , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Testes de Toxicidade/instrumentação , Alanina Transaminase/genética , Animais , Aspartato Aminotransferases/genética , Primers do DNA/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...