Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2300375, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548666

RESUMO

In anti-cancer metastasis treatment, precise drug delivery to cancer cells remains a challenge. Innovative nanocomposites are developed to tackle these issues effectively. The approach involves the creation of manganese oxide (Mn3O4) nanoparticles (NPs) and their functionalization using trisodium citrate to yield functionalized Mn3O4 NPs (F-Mn3O4 NPs), with enhanced water solubility, stability, and biocompatibility. Subsequently, the chemotherapeutic drug doxorubicin (DOX) is encapsulated with Mn3O4 NPs, resulting in DOX/Mn3O4 NPs. To achieve cell-specific targeting, These NPs are coated with HeLa cell membranes (HCM), forming HCM/DOX/Mn3O4. For further refinement, a transferrin (Tf) receptor is integrated with cracked HCM to create Tf-HCM/DOX/Mn3O4 nanocomposites (NC) with specific cell membrane targeting capabilities. The resulting Tf-HCM/DOX/Mn3O4 NC exhibits excellent drug encapsulation efficiency (97.5%) and displays triggered drug release when exposed to NIR laser irradiation in the tumor's environment (pH 5.0 and 6.5). Furthermore, these nanocomposites show resistance to macrophage uptake and demonstrate homotypic cancer cell targeting specificity, even in the presence of other tumor cells. In vitro toxicity tests show that Tf-HCM/DOX/Mn3O4 NC achieves significant anticancer activity against HeLa and BT20 cancer cells, with percentages of 76.46% and 71.36%, respectively. These results indicate the potential of Tf-HCM/DOX/Mn3O4 NC as an effective nanoplatform for chemo-photothermal therapy.

2.
J Nanobiotechnology ; 21(1): 437, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986071

RESUMO

Photoacoustic imaging (PAI) is a successful clinical imaging platform for management of cancer and other health conditions that has seen significant progress in the past decade. However, clinical translation of PAI based methods are still under scrutiny as the imaging quality and clinical information derived from PA images are not on par with other imaging methods. Hence, to improve PAI, exogenous contrast agents, in the form of nanomaterials, are being used to achieve better image with less side effects, lower accumulation, and improved target specificity. Nanomedicine has become inevitable in cancer management, as it contributes at every stage from diagnosis to therapy, surgery, and even in the postoperative care and surveillance for recurrence. Nanocontrast agents for PAI have been developed and are being explored for early and improved cancer diagnosis. The systemic stability and target specificity of the nanomaterials to render its theranostic property depends on various influencing factors such as the administration route and physico-chemical responsiveness. The recent focus in PAI is on targeting the lymphatic system and nodes for cancer diagnosis, as they play a vital role in cancer progression and metastasis. This review aims to discuss the clinical advancements of PAI using nanoparticles as exogenous contrast agents for cancer theranostics with emphasis on PAI of lymphatic system for diagnosis, cancer progression, metastasis, PAI guided tumor resection, and finally PAI guided drug delivery.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Meios de Contraste , Medicina de Precisão , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sistema Linfático/diagnóstico por imagem
3.
Sensors (Basel) ; 23(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631826

RESUMO

Ultrasound has a deep penetrating ability with minimal or no tissue injury, while cancer-mediated complications during diagnosis, therapy, and surgery have become a serious challenge for clinicians and lead to the severity of the primary condition (cancer). The current study highlights the importance of ultrasound imaging and focused ultrasound therapy during cancer diagnosis, pain reduction, guidance for surgical resection of cancer, and the effectiveness of chemotherapy. We performed the bibliometric analysis on research domains involving ultrasound, cancer management, pain, and other challenges (chemotherapy, surgical guidance, and postoperative care), to observe the trend by which the research field has grown over the years and propose a possible future trend. The data was obtained from the Web of Science, processed, and exported as plain text files for analysis in the Bibliometrix R web interface using the Biblioshiny package. A total of 3248 documents were identified from 1100 journal sources. A total of 390 articles were published in 2022, with almost a 100% growth rate from previous years. Based on the various network analysis, we conclude that the outcome of the constant research in this domain will result in better patient care during the management of various diseases, including cancer and other co-morbidities.


Assuntos
Dor do Câncer , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Dor , Ultrassonografia , Bibliometria
4.
Mater Today Bio ; 19: 100556, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36756211

RESUMO

Biomaterials and pertaining formulations have been very successful in various diagnostic and therapeutic applications because of its ability to overcome pharmacological limitations. Some of them have gained significant focus in the recent decade for their theranostic properties. Exosomes can be grouped as biomaterials, since they consist of various biological micro/macromolecules and possess all the properties of a stable biomaterial with size in nano range. Significant research has gone into isolation and exploitation of exosomes as potential theranostic agent. However, the limitations in terms of yield, efficacy, and target specificity are continuously being addressed. On the other hand, several nano/microformulations are responsive to physical or chemical alterations and were successfully stimulated by tweaking the physical characteristics of the surrounding environment they are in. Some of them are termed as photodynamic, sonodynamic or thermodynamic therapeutic systems. In this regard, ultrasound and acoustic systems were extensively studied for its ability towards altering the properties of the systems to which they were applied on. In this review, we have detailed about the diagnostic and therapeutic applications of exosomes and ultrasound separately, consisting of their conventional applications, drawbacks, and developments for addressing the challenges. The information were categorized into various sections that provide complete overview of the isolation strategies and theranostic applications of exosomes in various diseases. Then the ultrasound-based disease diagnosis and therapy were elaborated, with special interest towards the use of ultrasound in enhancing the efficacy of nanomedicines and nanodrug delivery systems, Finally, we discussed about the ability of ultrasound in enhancing the diagnostic and therapeutic properties of exosomes, which could be the future of theranostics.

5.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850513

RESUMO

Ultrasound imaging is a highly valuable tool in imaging human tissues due to its non-invasive and easily accessible nature. Despite advances in the field of ultrasound research, conventional transducers with frequencies lower than 20 MHz face limitations in resolution for cellular applications. To address this challenge, we employed ultrahigh frequency (UHF) transducers and demonstrated their potential applications in the field of biomedical engineering, specifically for cell imaging and acoustic tweezers. The lateral resolution achieved with a 110 MHz UHF transducer was 20 µm, and 6.5 µm with a 410 MHz transducer, which is capable of imaging single cells. The results of our experiments demonstrated the successful imaging of a single PC-3 cell and a 15 µm bead using an acoustic scanning microscope equipped with UHF transducers. Additionally, the dual-mode multifunctional UHF transducer was used to trap and manipulate single cells and beads, highlighting its potential for single-cell studies in areas such as cell deformability and mechanotransduction.


Assuntos
Mecanotransdução Celular , Ultrassom , Humanos , Diagnóstico por Imagem , Acústica , Análise de Célula Única
6.
Sci Rep ; 12(1): 19873, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400803

RESUMO

This study aimed to automatically classify live cells based on their cell type by analyzing the patterns of backscattered signals of cells with minimal effect on normal cell physiology and activity. Our previous studies have demonstrated that label-free acoustic sensing using high-frequency ultrasound at a high pulse repetition frequency (PRF) can capture and analyze a single object from a heterogeneous sample. However, eliminating possible errors in the manual setting and time-consuming processes when postprocessing integrated backscattering (IB) coefficients of backscattered signals is crucial. In this study, an automated cell-type classification system that combines a label-free acoustic sensing technique with deep learning-empowered artificial intelligence models is proposed. We applied an one-dimensional (1D) convolutional autoencoder to denoise the signals and conducted data augmentation based on Gaussian noise injection to enhance the robustness of the proposed classification system to noise. Subsequently, denoised backscattered signals were classified into specific cell types using convolutional neural network (CNN) models for three types of signal data representations, including 1D CNN models for waveform and frequency spectrum analysis and two-dimensional (2D) CNN models for spectrogram analysis. We evaluated the proposed system by classifying two types of cells (e.g., RBC and PNT1A) and two types of polystyrene microspheres by analyzing their backscattered signal patterns. We attempted to discover cell physical properties reflected on backscattered signals by controlling experimental variables, such as diameter and structure material. We further evaluated the effectiveness of the neural network models and efficacy of data representations by comparing their accuracy with that of baseline methods. Therefore, the proposed system can be used to classify reliably and precisely several cell types with different intrinsic physical properties for personalized cancer medicine development.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Acústica , Frequência Cardíaca , Ultrassonografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-35377844

RESUMO

Current miniaturized ultrasound transducers suffer from insufficient attenuation from the backing layer due to their limited thickness. The thickness of the backing layer is one of the critical factors determining the device size and transducer performance for miniaturized transducers inserted and operated in a limited space. Glass bubbles, polyamide resin, and tungsten powder are combined to form a new highly attenuative backing material. It has high attenuation (>160 dB/cm at 5 MHz), which is five times greater than silver-based conductive epoxy commonly used for high-frequency ultrasound transducers, appropriate acoustic impedance (4.6 MRayl), and acceptable damping capability. An intravascular ultrasound (IVUS) transducer constructed with the 170 [Formula: see text] of the proposed backing layer demonstrated that the amplitude of the signal returned from the backing layer was 1.8 times smaller, with ring-down attenuated by 6 dB. Wire-phantom imaging revealed that the axial resolution was 30% better with the suggested backing than silver-based conductive epoxy backing. Because of its excellent attenuation capability even at a limited thickness, simple manufacturing process, and easy customization capability, the suggested highly attenuative backing layer may be used for miniaturized ultrasound transducers.


Assuntos
Prata , Transdutores , Desenho de Equipamento , Imagens de Fantasmas , Ultrassonografia/métodos
8.
Sci Rep ; 12(1): 6891, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477742

RESUMO

Cell deformability is a useful feature for diagnosing various diseases (e.g., the invasiveness of cancer cells). Existing methods commonly inflict pressure on cells and observe changes in cell areas, diameters, or thickness according to the degree of pressure. Then, the Young's moduli (i.e., a measure of deformability) of cells are estimated based on the assumption that the degrees of the changes are inversely proportional to Young's moduli. However, manual measurements of the physical changes in cells are labor-intensive, and the subjectivity of the operators can intervene during this step, thereby causing considerable uncertainty. Further, because the shapes of cells are nonuniform, we cannot ensure the assumption for linear correlations of physical changes in cells with their deformability. Therefore, this study aims at measuring non-linear elastic moduli of live cells (degrees of cell deformability) automatically by employing conventional neural networks (CNN) and multilayer perceptrons (MLP) while preserving (or enhancing) the accuracy of the manual methods. First, we obtain photomicrographs of cells on multiple pressure levels using single-beam acoustic tweezers, and then, we suggest an image preprocessing method for emphasizing changes in cell areas on the photomicrographs. The CNN model is trained to measure the ratios of the cell area change at each pressure level. Then, we apply the multilayer perceptron (MLP) to learn the correlations of the cell area change ratios according to the pressure levels with cell deformability. The accuracy of the CNN was evaluated using two types of breast cancer cells: MDA-MB-231 (invasive) and MCF-7 (noninvasive). The MLP was assessed using five different beads (Young's moduli from 0.214 to 9.235 kPa), which provides standardized reference data of the non-linear elastic moduli of live cells. Finally, we validated the practicality of the proposed system by examining whether the non-linear elastic moduli estimated by the proposed system can distinguish invasive breast cancer cells from noninvasive ones.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Acústica , Neoplasias da Mama/diagnóstico , Módulo de Elasticidade , Feminino , Humanos , Redes Neurais de Computação
9.
Ultrason Sonochem ; 82: 105844, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34965507

RESUMO

Microbubbles are widely used in medical ultrasound imaging and drug delivery. Many studies have attempted to quantify the collapse pressure of microbubbles using methods that vary depending on the type and population of bubbles and the frequency band of the ultrasound. However, accurate measurement of collapse pressure is difficult as a result of non-acoustic pressure factors generated by physical and chemical reactions such as dissolution, cavitation, and interaction between bubbles. In this study, we developed a method for accurately measuring collapse pressure using only ultrasound pulse acoustic pressure. Under the proposed method, the collapse pressure of a single hollow glass microsphere (HGM) is measured using a high-frequency (20-40 MHz) single-beam acoustic tweezer (SBAT), thereby eliminating the influence of additional factors. Based on these measurements, the collapse pressure is derived as a function of the HGM size using the microspheres' true density. We also developed a method for estimating high-frequency acoustic pressure, whose measurement using current hydrophone equipment is complicated by limitations in the size of the active aperture. By recording the transmit voltage at the moment of collapse and referencing it against the corresponding pressure, it is possible to estimate the acoustic pressure at the given transmit condition. These results of this study suggest a method for quantifying high-frequency acoustic pressure, provide a potential reference for the characterization of bubble collapse pressure, and demonstrate the potential use of acoustic tweezers as a tool for measuring the elastic properties of particles/cells.

10.
Sci Rep ; 11(1): 20416, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650165

RESUMO

With the increasing need for steel sheet quality assurance, the detection of micro-scaled inclusions in steel sheets has become critical. Many techniques have been explored to detect inclusions, e.g., visual inspection, radiography, magnetic testing, and ultrasound. Among these methods, ultrasound (US) is the most commonly used non-destructive testing (NDT) method due to its ease of use and deep penetration depth. However, ultrasound currently cannot be used for detecting the micro-scaled inclusions due to low spatial resolution, e.g., less than 30 µm, which are the key important factors causing the cracks in the high-quality steel sheets. Here, we demonstrate a high-resolution US imaging (USI) using high-frequency US transducers to image micro inclusions in steel sheets. Our system utilizes through-transmission USI and identifies ultrasound scattering produced by the inclusions. We first ultrasonically imaged the artificial flaws induced by the laser on the steel sheet surface for validating the system. We then imaged the real inclusions in the steel sheets formed during manufacturing processes and analyzed them to derive quantitative parameters related to the number of micro-scaled inclusions. Our results confirm that inclusions less than 30 µm can be identified using our high-resolution USI modality and has the potential to be used as an effective tool for quality assurance of the steel sheets.

11.
Photoacoustics ; 23: 100274, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34150499

RESUMO

Photoacoustic microscopy (PAM) is an important imaging tool that can noninvasively visualize the anatomical structure of living animals. However, the limited scanning area restricts traditional PAM systems for scanning a large animal. Here, we firstly report a dual-channel PAM system based on a custom-made slider-crank scanner. This novel scanner allows us to stably capture an ultra-widefield scanning area of 24 mm at a high B-scan speed of 32 Hz while maintaining a high signal-to-noise ratio. Our system's spatial resolution is measured at ∼3.4 µm and ∼37 µm for lateral and axial resolution, respectively. Without any contrast agent, a dragonfly wing, a nude mouse ear, an entire rat ear, and a portion of mouse sagittal are successfully imaged. Furthermore, for hemodynamic monitoring, the mimicking circulating tumor cells using magnetic contrast agent is rapidly captured in vitro. The experimental results demonstrated that our device is a promising tool for biological applications.

12.
Sensors (Basel) ; 21(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805048

RESUMO

High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging systems based on array transducers capable of dynamic receive focusing have considerably improved the image quality in terms of spatial resolution and signal-to-noise ratio (SNR) compared to those by the single-element transducer-based one. However, the array system still suffers from low spatial resolution and SNR in out-of-focus regions, resulting in a blurred image and a limited penetration depth. In this paper, we present synthetic aperture imaging with a virtual source (SA-VS) for an ophthalmic application using a high-frequency convex array transducer. The performances of the SA-VS were evaluated with phantom and ex vivo experiments in comparison with the conventional dynamic receive focusing method. Pre-beamformed radio-frequency (RF) data from phantoms and excised bovine eye were acquired using a custom-built 64-channel imaging system. In the phantom experiments, the SA-VS method showed improved lateral resolution (>10%) and sidelobe level (>4.4 dB) compared to those by the conventional method. The SNR was also improved, resulting in an increased penetration depth: 16 mm and 23 mm for the conventional and SA-VS methods, respectively. Ex vivo images with the SA-VS showed improved image quality at the entire depth and visualized structures that were obscured by noise in conventional imaging.


Assuntos
Neuroimagem , Transdutores , Animais , Bovinos , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
13.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668260

RESUMO

We present a back-to-back (BTB) structured, dual-mode ultrasonic device that incorporates a single-element 5.3 MHz transducer for high-intensity focused ultrasound (HIFU) treatment and a single-element 20.0 MHz transducer for high-resolution ultrasound imaging. Ultrasound image-guided surgical systems have been developed for lesion monitoring to ensure that ultrasonic treatment is correctly administered at the right locations. In this study, we developed a dual-element transducer composed of two elements that share the same housing but work independently with a BTB structure, enabling a mode change between therapy and imaging via 180-degree mechanical rotation. The optic fibers were embedded in the HIFU focal region of ex vivo chicken breasts and the temperature change was measured. Images were obtained in vivo mice before and after treatment and compared to identify the treated region. We successfully acquired B-mode and C-scan images that display the hyperechoic region indicating coagulation necrosis in the HIFU-treated volume up to a depth of 10 mm. The compact BTB dual-mode ultrasonic transducer may be used for subcutaneous thermal ablation and monitoring, minimally invasive surgery, and other clinical applications, all with ultrasound only.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Ultrassom , Animais , Camundongos , Transdutores , Ultrassonografia
14.
Cancers (Basel) ; 12(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408544

RESUMO

Single-beam acoustic tweezers (SBAT) is a widely used trapping technique to manipulate microscopic particles or cells. Recently, the characterization of a single cancer cell using high-frequency (>30 MHz) SBAT has been reported to determine its invasiveness and metastatic potential. Investigation of cell elasticity and invasiveness is based on the deformability of cells under SBAT's radiation forces, and in general, more physically deformed cells exhibit higher levels of invasiveness and therefore higher metastatic potential. However, previous imaging analysis to determine substantial differences in cell deformation, where the SBAT is turned ON or OFF, relies on the subjective observation that may vary and requires follow-up evaluations from experts. In this study, we propose an automatic and reliable cancer cell classification method based on SBAT and a convolutional neural network (CNN), which provides objective and accurate quantitative measurement results. We used a custom-designed 50 MHz SBAT transducer to obtain a series of images of deformed human breast cancer cells. CNN-based classification methods with data augmentation applied to collected images determined and validated the metastatic potential of cancer cells. As a result, with the selected optimizers, precision, and recall of the model were found to be greater than 0.95, which highly validates the classification performance of our integrated method. CNN-guided cancer cell deformation analysis using SBAT may be a promising alternative to current histological image analysis, and this pretrained model will significantly reduce the evaluation time for a larger population of cells.

15.
Cells ; 9(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375298

RESUMO

In glucose-stimulated insulin secretion (GSIS) of pancreatic ß-cells, the rise of free cytosolic Ca2+ concentration through voltage-gated calcium channels (VGCCs) triggers the exocytosis of insulin-containing granules. Recently, mechanically induced insulin secretion pathways were also reported, which utilize free cytosolic Ca2+ ions as a direct regulator of exocytosis. In this study, we aimed to investigate intracellular Ca2+ responses on the HIT-T15 pancreatic ß-cell line upon low-intensity pulsed ultrasound (LIPUS) stimulation and found that ultrasound induces two distinct types of intracellular Ca2+ oscillation, fast-irregular and slow-periodic, from otherwise resting cells. Both Ca2+ patterns depend on the purinergic signaling activated by the rise of extracellular ATP or ADP concentration upon ultrasound stimulation, which facilitates the release through mechanosensitive hemichannels on the plasma membrane. Further study demonstrated that two subtypes of purinergic receptors, P2X and P2Y, are working in a competitive manner depending on the level of glucose in the cell media. The findings can serve as an essential groundwork providing an underlying mechanism for the development of a new therapeutic approach for diabetic conditions with further validation.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Espaço Intracelular/metabolismo , Ultrassom , Animais , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Cricetinae , Modelos Biológicos , Receptores Purinérgicos/metabolismo
16.
Sci Rep ; 10(1): 6544, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300153

RESUMO

Single-element transducer based ultrasound (US) imaging offers a compact and affordable solution for high-frequency preclinical and clinical imaging because of its low cost, low complexity, and high spatial resolution compared to array-based US imaging. To achieve B-mode imaging, conventional approaches adapt mechanical linear or sector scanning methods. However, due to its low scanning speed, mechanical linear scanning cannot achieve acceptable temporal resolution for real-time imaging, and the sector scanning method requires specialized low-load transducers that are small and lightweight. Here, we present a novel single-element US imaging system based on an acoustic mirror scanning method. Instead of physically moving the US transducer, the acoustic path is quickly steered by a water-proofed microelectromechanical (MEMS) scanner, achieving real-time imaging. Taking advantage of the low-cost and compact MEMS scanner, we implemented both a tabletop system for in vivo small animal imaging and a handheld system for in vivo human imaging. Notably, in combination with mechanical raster scanning, we could acquire the volumetric US images in live animals. This versatile US imaging system can be potentially used for various preclinical and clinical applications, including echocardiography, ophthalmic imaging, and ultrasound-guided catheterization.


Assuntos
Imageamento Tridimensional , Sistemas Microeletromecânicos/instrumentação , Ultrassonografia , Água , Animais , Feminino , Humanos , Camundongos Endogâmicos BALB C , Imagens de Fantasmas , Folhas de Planta/anatomia & histologia
17.
Microsyst Nanoeng ; 6: 39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567652

RESUMO

Advancements in diagnostic systems for metastatic cancer over the last few decades have played a significant role in providing patients with effective treatment by evaluating the characteristics of cancer cells. Despite the progress made in cancer prognosis, we still rely on the visual analysis of tissues or cells from histopathologists, where the subjectivity of traditional manual interpretation persists. This paper presents the development of a dual diagnosis and treatment tool using an in vitro acoustic tweezers platform with a 50 MHz ultrasonic transducer for label-free trapping and bursting of human breast cancer cells. For cancer cell detection and classification, the mechanical properties of a single cancer cell were quantified by single-beam acoustic tweezers (SBAT), a noncontact assessment tool using a focused acoustic beam. Cell-mimicking phantoms and agarose hydrogel spheres (AHSs) served to standardize the biomechanical characteristics of the cells. Based on the analytical comparison of deformability levels between the cells and the AHSs, the mechanical properties of the cells could be indirectly measured by interpolating the Young's moduli of the AHSs. As a result, the calculated Young's moduli, i.e., 1.527 kPa for MDA-MB-231 (highly invasive breast cancer cells), 2.650 kPa for MCF-7 (weakly invasive breast cancer cells), and 2.772 kPa for SKBR-3 (weakly invasive breast cancer cells), indicate that highly invasive cancer cells exhibited a lower Young's moduli than weakly invasive cells, which indicates a higher deformability of highly invasive cancer cells, leading to a higher metastasis rate. Single-cell treatment may also be carried out by bursting a highly invasive cell with high-intensity, focused ultrasound.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31514129

RESUMO

Biological studies often involve the investigation of immobilized (or trapped) particles and cells. Various trapping methods without touching, such as optical, magnetic, and acoustic tweezers, have been developed to trap small particles. Here, we present the manipulation of a single cell or multiple cells using ultrasound-array-based single-beam acoustic tweezers (UA-SBATs). In SBATs, only a one-sided tightly focused acoustic beam produces a high acoustic gradient force-a mechanism that mirrors that of optical tweezers. As a result, targeted cells can be attracted to the beam center and immobilized within its trapping zone. Since an array transducer allows acoustic beam steering and scanning electronically instead of mechanical translation, it can manipulate cells more simply and quickly compared with single-element transducers, especially in biocompatible setup. In this experiment, a customized 30-MHz array transducer with an interdigitally bonded (IB) 2-2 piezocomposite was employed to immobilize MCF-12F cells. Cells were attracted to the center of the beam and laterally displaced with the array transducer without any damages to the cells. These findings suggest that UA-SBAT can be a promising tool for cell manipulation and may pave the way for exploring new biological applications.


Assuntos
Acústica , Células Imobilizadas/citologia , Micromanipulação/métodos , Transdutores , Ultrassonografia/instrumentação , Linhagem Celular , Humanos
19.
ACS Appl Mater Interfaces ; 11(47): 43920-43927, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31686496

RESUMO

Here, we demonstrate a supramolecular latching tool for bio-orthogonal noncovalent anchoring of small synthetic molecules in live animal models using a fully synthetic high-affinity binding pair between cucurbit[7]uril (CB[7]) and adamantylammonium (AdA). This supramolecular latching system is small (∼1 kDa), ensuring efficient uptake into cells, tissues, and whole organisms. It is also chemically robust and resistant to enzymatic degradation and analogous to well-characterized biological systems in terms of noncovalent binding. Occurrence of fluorescence resonance energy transfer (FRET) between cyanine 3-CB[7] (Cy3-CB[7]) and boron-dipyrromethene 630/650X-AdA (BDP630/650-AdA) inside a live worm (Caenorhabditis elegans) indicates efficient in situ high-affinity association between AdA and CB[7] inside live animals. In addition, selective visualization of a cancer site of a live mouse upon supramolecular latching of cyanine 5-AdA (Cy5-AdA) on prelocalized CB[7]-conjugating antibody on the cancer site demonstrates the potential of this synthetic system for in vivo cancer imaging. These findings provide a fresh insight into the development of new chemical biology tools and medical therapeutic systems.


Assuntos
Diagnóstico por Imagem/instrumentação , Transferência Ressonante de Energia de Fluorescência/instrumentação , Neoplasias/diagnóstico por imagem , Adamantano/análogos & derivados , Adamantano/química , Anfetaminas/química , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C
20.
Sci Rep ; 8(1): 15708, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356155

RESUMO

The role of cell mechanics in cancer cells is a novel research area that has resulted in the identification of new mechanisms of therapy resistance. Single beam acoustic (SBA) tweezers are a promising technology for the quantification of the mechanical phenotype of cells. Our previous study showed that SBA tweezers can be used to quantify the deformability of adherent breast cancer cell lines. The physical properties of patient-derived (primary) pre-B acute lymphoblastic leukemia (ALL) cells involved in chemotherapeutic resistance have not been widely investigated. Here, we demonstrate the feasibility of analyzing primary pre-B ALL cells from four cases using SBA tweezers. ALL cells showed increased deformability with increasing acoustic pressure of the SBA tweezers. Moreover, ALL cells that are resistant to chemotherapeutic drugs were more deformable than were untreated ALL cells. We demonstrated that SBA tweezers can quantify the deformability of nonadherent leukemia cells and discriminate this mechanical phenotype in chemotherapy-resistant leukemia cells in a contact- and label-free manner.


Assuntos
Fenômenos Biomecânicos , Resistencia a Medicamentos Antineoplásicos , Pinças Ópticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Acústica , Linhagem Celular Tumoral , Forma Celular , Elasticidade , Humanos , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...