Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Neurosci ; 18: 1308663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379760

RESUMO

Cochlear implants are among the most successful neural prosthetic devices to date but exhibit poor frequency selectivity and the inability to consistently activate apical (low frequency) spiral ganglion neurons. These issues can limit hearing performance in many cochlear implant patients, especially for understanding speech in noisy environments and in perceiving or appreciating more complex inputs such as music and multiple talkers. For cochlear implants, electrical current must pass through the bony wall of the cochlea, leading to widespread activation of auditory nerve fibers. Cochlear implants also cannot be implanted in some individuals with an obstruction or severe malformations of the cochlea. Alternatively, intraneural stimulation delivered via an auditory nerve implant could provide direct contact with neural fibers and thus reduce unwanted current spread. More confined current during stimulation can increase selectivity of frequency fiber activation. Furthermore, devices such as the Utah Slanted Electrode Array can provide access to the full cross section of the auditory nerve, including low frequency fibers that are difficult to reach using a cochlear implant. However, further scientific and preclinical research of these Utah Slanted Electrode Array devices is limited by the lack of a chronic large animal model for the auditory nerve implant, especially one that leverages an appropriate surgical approach relevant for human translation. This paper presents a newly developed transbullar translabyrinthine surgical approach for implanting the auditory nerve implant into the cat auditory nerve. In our first of a series of studies, we demonstrate a surgical approach in non-recovery experiments that enables implantation of the auditory nerve implant into the auditory nerve, without damaging the device and enabling effective activation of the auditory nerve fibers, as measured by electrode impedances and electrically evoked auditory brainstem responses. These positive results motivate performing future chronic cat studies to assess the long-term stability and function of these auditory nerve implant devices, as well as development of novel stimulation strategies that can be translated to human patients.

2.
Bioelectron Med ; 9(1): 25, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964380

RESUMO

BACKGROUND: Noninvasive ultrasound (US) has been used therapeutically for decades, with applications in tissue ablation, lithotripsy, and physical therapy. There is increasing evidence that low intensity US stimulation of organs can alter physiological and clinical outcomes for treatment of health disorders including rheumatoid arthritis and diabetes. One major translational challenge is designing portable and reliable US devices that can be used by patients in their homes, with automated features to detect rib location and aid in efficient transmission of energy to organs of interest. This feasibility study aimed to assess efficacy in rib bone detection without conventional imaging, using a single channel US pitch-catch technique integrated into an US therapy device to detect pulsed US reflections from ribs. METHODS: In 20 healthy volunteers, the location of the ribs and spleen were identified using a diagnostic US imaging system. Reflected ultrasound signals were recorded at five positions over the spleen and adjacent ribs using the therapy device. Signals were classified as between ribs (intercostal), partially over a rib, or fully over a rib using four models: threshold-based time domain classification, threshold-based frequency domain classification, logistic regression, and support vector machine (SVM). RESULTS: SVM performed best overall on the All Participants cohort with accuracy up to 96.25%. All models' accuracies were improved by separating participants into two cohorts based on Body Mass Index (BMI) and re-fitting each model. After separation into Low BMI and High BMI cohorts, a simple time-thresholding approach achieved accuracies up to 100% and 93.75%, respectively. CONCLUSION: These results demonstrate that US reflection signal classification can accurately provide low complexity, real-time automated onboard rib detection and user feedback to advance at-home therapeutic US delivery.

3.
J Neurophysiol ; 130(3): 719-735, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609690

RESUMO

Neural responses to acoustic stimulation have long been studied throughout the auditory system to understand how sound information is coded for perception. Within the inferior colliculus (IC), a majority of the studies have focused predominantly on characterizing neural responses within the central region (ICC), as it is viewed as part of the lemniscal system mainly responsible for auditory perception. In contrast, the responses of outer cortices (ICO) have largely been unexplored, though they also function in auditory perception tasks. Therefore, we sought to expand on previous work by completing a three-dimensional (3-D) functional mapping study of the whole IC. We analyzed responses to different pure tone and broadband noise stimuli across all IC subregions and correlated those responses with over 2,000 recording locations across the IC. Our study revealed there are well-organized trends for temporal response parameters across the full IC that do not show a clear distinction at the ICC and ICO border. These gradients span from slow, imprecise responses in the caudal-medial IC to fast, precise responses in the rostral-lateral IC, regardless of subregion, including the fastest responses located in the ICO. These trends were consistent at various acoustic stimulation levels. Weaker spatial trends could be found for response duration and spontaneous activity. Apart from tonotopic organization, spatial trends were not apparent for spectral response properties. Overall, these detailed acoustic response maps across the whole IC provide new insights into the organization and function of the IC.NEW & NOTEWORTHY Study of the inferior colliculus (IC) has largely focused on the central nucleus, with little exploration of the outer cortices. Here, we systematically assessed the acoustic response properties from over 2,000 locations in different subregions of the IC. The results revealed spatial trends in temporal response patterns that span all subregions. Furthermore, two populations of temporal response types emerged for neurons in the outer cortices that may contribute to their functional roles in auditory tasks.


Assuntos
Colículos Inferiores , Tempo de Reação , Neurônios , Estimulação Acústica , Acústica
5.
J Neural Eng ; 19(3)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35671702

RESUMO

Objective. There has been growing interest in understanding multisensory integration in the cortex through activation of multiple sensory and motor pathways to treat brain disorders, such as tinnitus or essential tremors. For tinnitus, previous studies show that combined sound and body stimulation can modulate the auditory pathway and lead to significant improvements in tinnitus symptoms. Considering that tinnitus is a type of chronic auditory pain, bimodal stimulation could potentially alter activity in the somatosensory pathway relevant for treating chronic pain. As an initial step towards that goal, we mapped and characterized neuromodulation effects in the somatosensory cortex (SC) in response to sound and/or electrical stimulation of the body.Approach.We first mapped the topographic organization of activity across the SC of ketamine-anesthetized guinea pigs through electrical stimulation of different body locations using subcutaneous needle electrodes or with broadband acoustic stimulation. We then characterized how neural activity in different parts of the SC could be facilitated or suppressed with bimodal stimulation.Main results. The topography in the SC of guinea pigs in response to electrical stimulation of the body aligns consistently to that shown in previous rodent studies. Interestingly, auditory broadband noise stimulation primarily excited SC areas that typically respond to stimulation of lower body locations. Although there was only a small subset of SC locations that were excited by acoustic stimulation alone, all SC recording sites could be altered (facilitated or suppressed) with bimodal stimulation. Furthermore, specific regions of the SC could be modulated by stimulating an appropriate body region combined with broadband noise.Significance. These findings show that bimodal stimulation can excite or modulate firing across a widespread yet targeted population of SC neurons. This approach may provide a non-invasive method for altering or disrupting abnormal firing patterns within certain parts of the SC for chronic pain treatment.


Assuntos
Córtex Auditivo , Dor Crônica , Núcleo Coclear , Zumbido , Estimulação Acústica/métodos , Animais , Córtex Auditivo/fisiologia , Núcleo Coclear/fisiologia , Cobaias , Córtex Somatossensorial
6.
Sci Rep ; 12(1): 10845, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773272

RESUMO

More than 10% of the population suffers from tinnitus, which is a phantom auditory condition that is coded within the brain. A new neuromodulation approach to treat tinnitus has emerged that combines sound with electrical stimulation of somatosensory pathways, supported by multiple animal studies demonstrating that bimodal stimulation can elicit extensive neural plasticity within the auditory brain. More recently, in a large-scale clinical trial, bimodal neuromodulation combining sound and tongue stimulation drove significant reductions in tinnitus symptom severity during the first 6 weeks of treatment, followed by diminishing improvements during the second 6 weeks of treatment. The primary objective of the large-scale randomized and double-blinded study presented in this paper was to determine if background wideband noise as used in the previous clinical trial was necessary for bimodal treatment efficacy. An additional objective was to determine if adjusting the parameter settings after 6 weeks of treatment could overcome treatment habituation effects observed in the previous study. The primary endpoint at 6-weeks involved within-arm and between-arm comparisons for two treatment arms with different bimodal neuromodulation settings based on two widely used and validated outcome instruments, Tinnitus Handicap Inventory and Tinnitus Functional Index. Both treatment arms exhibited a statistically significant reduction in tinnitus symptoms during the first 6-weeks, which was further reduced significantly during the second 6-weeks by changing the parameter settings (Cohen's d effect size for full treatment period per arm and outcome measure ranged from - 0.7 to - 1.4). There were no significant differences between arms, in which tongue stimulation combined with only pure tones and without background wideband noise was sufficient to reduce tinnitus symptoms. These therapeutic effects were sustained up to 12 months after the treatment ended. The study included two additional exploratory arms, including one arm that presented only sound stimuli during the first 6 weeks of treatment and bimodal stimulation in the second 6 weeks of treatment. This arm revealed the criticality of combining tongue stimulation with sound for treatment efficacy. Overall, there were no treatment-related serious adverse events and a high compliance rate (83.8%) with 70.3% of participants indicating benefit. The discovery that adjusting stimulation parameters overcomes previously observed treatment habituation can be used to drive greater therapeutic effects and opens up new opportunities for optimizing stimuli and enhancing clinical outcomes for tinnitus patients with bimodal neuromodulation.


Assuntos
Zumbido , Estimulação Acústica , Animais , Método Duplo-Cego , Humanos , Plasticidade Neuronal/fisiologia , Ruído , Resultado do Tratamento
7.
IEEE Trans Biomed Eng ; 69(12): 3772-3783, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35604995

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic inflammatory syndrome that features painful and destructive joint disease. Aggressive disease-modifying treatment can result in reduced symptoms and protection from irreversible joint damage; however, assessment of treatment efficacy is currently based largely on subjective measures of patient and physician impressions. In this work, we address this compelling need to provide an accurate and quantitative capability for monitoring joint health in patients with RA. METHODS: Joint acoustic emissions (JAEs), electrical bioimpedance (EBI), and kinematics were measured noninvasively from 11 patients with RA over the course of three weeks using a custom multimodal sensing brace, resulting in 49 visits with JAE recordings and 43 with EBI recordings. Features derived from all sensing modalities were fed into a linear discriminant analysis (LDA) model to predict disease activity according to the validated disease activity index (the DAS28-ESR). Erythrocyte sedimentation rate (ESR) was predicted using ridge regression and classified into a high or low class using LDA. RESULTS: DAS28-ESR level was predicted with an area under the receiver operating characteristic curve (AUC) of 0.82. With JAEs alone, we were able to track intrasubject differences in the disease activity score as well as classify ESR level with an AUC of 0.93. The majority of patients reported both an interest and ability to use the brace at home for longitudinal monitoring. CONCLUSION: This work demonstrates the ability to detect RA disease activity using noninvasive sensing. SIGNIFICANCE: This system has the potential to improve RA disease activity monitoring by giving treating clinicians objective data that can be acquired independent of a face-to-face clinic visit.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/terapia , Sedimentação Sanguínea , Curva ROC , Resultado do Tratamento , Índice de Gravidade de Doença
8.
Sci Rep ; 12(1): 2182, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140238

RESUMO

Ultrasound (US) has been shown to stimulate brain circuits, however, the ability to excite peripheral nerves with US remains controversial. To the best of our knowledge, there is still no in vivo neural recording study that has applied US stimulation to a nerve isolated from surrounding tissue to confirm direct activation effects. Here, we show that US cannot excite an isolated mammalian sciatic nerve in an in vivo preparation, even at high pressures (relative to levels recommended in the FDA guidance for diagnostic ultrasound) and for a wide range of parameters, including different pulse patterns and center frequencies. US can, however, reliably inhibit nerve activity whereby greater suppression is correlated with increases in nerve temperature. By prohibiting the nerve temperature from increasing during US application, we did not observe suppressive effects. Overall, these findings demonstrate that US can reliably inhibit nerve activity through a thermal mechanism that has potential for various health disorders, though future studies are needed to evaluate the long-term safety of therapeutic ultrasound applications.


Assuntos
Bloqueio Nervoso/métodos , Nervo Isquiático/fisiologia , Ondas Ultrassônicas , Animais , Cobaias , Temperatura
9.
Sci Adv ; 7(27)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34193414

RESUMO

A non-faradaic label-free cortisol sensing platform is presented using a nanowell array design, in which the two probe electrodes are integrated within the nanowell structure. Rapid and low volume (≤5 µl) sensing was realized through functionalizing nanoscale volume wells with antibodies and monitoring the real-time binding events. A 28-well plate biochip was built on a glass substrate by sequential deposition, patterning, and etching steps to create a stack nanowell array sensor with an electrode gap of 40 nm. Sensor response for cortisol concentrations between 1 and 15 µg/dl in buffer solution was recorded, and a limit of detection of 0.5 µg/dl was achieved. Last, 65 human serum samples were collected to compare the response from human serum samples with results from the standard enzyme-linked immunosorbent assay (ELISA). These results confirm that nanowell array sensors could be a promising platform for point-of-care testing, where real-time, laboratory-quality diagnostic results are essential.


Assuntos
Técnicas Biossensoriais , Hidrocortisona , Anticorpos , Técnicas Biossensoriais/métodos , Eletrodos , Humanos , Imunoensaio
10.
Prog Brain Res ; 260: 1-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33637213

RESUMO

As for hypertension, chronic pain, epilepsy and other disorders with particular symptoms, a commonly accepted and unambiguous definition provides a common ground for researchers and clinicians to study and treat the problem. The WHO's ICD11 definition only mentions tinnitus as a nonspecific symptom of a hearing disorder, but not as a clinical entity in its own right, and the American Psychiatric Association's DSM-V doesn't mention tinnitus at all. Here we propose that the tinnitus without and with associated suffering should be differentiated by distinct terms: "Tinnitus" for the former and "Tinnitus Disorder" for the latter. The proposed definition then becomes "Tinnitus is the conscious awareness of a tonal or composite noise for which there is no identifiable corresponding external acoustic source, which becomes Tinnitus Disorder "when associated with emotional distress, cognitive dysfunction, and/or autonomic arousal, leading to behavioural changes and functional disability.". In other words "Tinnitus" describes the auditory or sensory component, whereas "Tinnitus Disorder" reflects the auditory component and the associated suffering. Whereas acute tinnitus may be a symptom secondary to a trauma or disease, chronic tinnitus may be considered a primary disorder in its own right. If adopted, this will advance the recognition of tinnitus disorder as a primary health condition in its own right. The capacity to measure the incidence, prevalence, and impact will help in identification of human, financial, and educational needs required to address acute tinnitus as a symptom but chronic tinnitus as a disorder.


Assuntos
Zumbido , Nível de Alerta , Estado de Consciência , Humanos , Zumbido/complicações
11.
J Neural Eng ; 18(4)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33626516

RESUMO

Objective.The auditory system is extremely efficient in extracting auditory information in the presence of background noise. However, people with auditory implants have a hard time understanding speech in noisy conditions. The neural mechanisms related to the processing of background noise, especially in the inferior colliculus (IC) where the auditory midbrain implant is located, are still not well understood. Understanding the mechanisms of perception in noise could lead to better stimulation or preprocessing strategies for such implants. We thus wish to investigate if there is a difference in the activity of neurons in the IC when presenting noisy vocalizations with different types of noise (stationary vs. non-stationary), input signal-to-noise ratios (SNR) and signal levels.Approach.We developed novel metrics based on a generalized linear model (GLM) to investigate the effect of a given input noise on neural activity. We used these metrics to analyze neural data recorded from the IC in ketamine-anesthetized female Hartley guinea pigs while presenting noisy vocalizations.Main results.We found that non-stationary noise clearly contributes to the multi-unit neural activity in the IC by causing excitation, regardless of the SNR, input level or vocalization type. However, when presenting white or natural stationary noises, a great diversity of responses was observed for the different conditions, where the multi-unit activity of some sites was affected by the presence of noise and the activity of others was not.Significance.The GLM-based metrics allowed the identification of a clear distinction between the effect of white or natural stationary noises and that of non-stationary noise on the multi-unit activity in the IC. This had not been observed before and indicates that the so-called noise invariance in the IC is dependent on the input noisy conditions. This could suggest different preprocessing or stimulation approaches for auditory midbrain implants depending on the noisy conditions.


Assuntos
Benchmarking , Colículos Inferiores , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Feminino , Cobaias , Colículos Inferiores/fisiologia , Modelos Lineares , Neurônios/fisiologia , Ruído
12.
Sci Transl Med ; 12(564)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028707

RESUMO

Tinnitus is a phantom auditory perception coded in the brain that can be bothersome or debilitating, affecting 10 to 15% of the population. Currently, there is no clinically recommended drug or device treatment for this major health condition. Animal research has revealed that sound paired with electrical somatosensory stimulation can drive extensive plasticity within the brain for tinnitus treatment. To investigate this bimodal neuromodulation approach in humans, we evaluated a noninvasive device that delivers sound to the ears and electrical stimulation to the tongue in a randomized, double-blinded, exploratory study that enrolled 326 adults with chronic subjective tinnitus. Participants were randomized into three parallel arms with different stimulation settings. Clinical outcomes were evaluated over a 12-week treatment period and a 12-month posttreatment phase. For the primary endpoints, participants achieved a statistically significant reduction in tinnitus symptom severity at the end of treatment based on two commonly used outcome measures, Tinnitus Handicap Inventory (Cohen's d effect size: -0.87 to -0.92 across arms; P < 0.001) and Tinnitus Functional Index (-0.77 to -0.87; P < 0.001). Therapeutic improvements continued for 12 months after treatment for specific bimodal stimulation settings, which had not previously been demonstrated in a large cohort for a tinnitus intervention. The treatment also achieved high compliance and satisfaction rates with no treatment-related serious adverse events. These positive therapeutic and long-term results motivate further clinical trials toward establishing bimodal neuromodulation as a clinically recommended device treatment for tinnitus.


Assuntos
Zumbido , Adulto , Animais , Estudos de Coortes , Estimulação Elétrica , Humanos , Projetos de Pesquisa , Zumbido/terapia , Língua , Resultado do Tratamento
13.
JMIR Res Protoc ; 8(9): e13176, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31573942

RESUMO

BACKGROUND: There is increasing evidence from animal and human studies that bimodal neuromodulation combining sound and electrical somatosensory stimulation of the tongue can induce extensive brain changes and treat tinnitus. OBJECTIVE: The main objectives of the proposed clinical study are to confirm the efficacy, safety, and tolerability of treatment demonstrated in a previous large-scale study of bimodal auditory and trigeminal nerve (tongue) stimulation (Treatment Evaluation of Neuromodulation for Tinnitus - Stage A1); evaluate the therapeutic effects of adjusting stimulation parameters over time; and determine the contribution of different features of bimodal stimulation in improving tinnitus outcomes. METHODS: This study will be a prospective, randomized, double-blind, parallel-arm, comparative clinical trial of a 12-week treatment for tinnitus using a Conformité Européenne (CE)-marked device with a pre-post and 12-month follow-up design. Four treatment arms will be investigated, in which each arm consists of two different stimulation settings, with the first setting presented during the first 6 weeks and the second setting presented during the next 6 weeks of treatment. The study will enroll 192 participants, split in a ratio of 80:80:16:16 across the four arms. Participants will be randomized to one of four arms and stratified to minimize baseline variability in four categories: two separate strata for sound level tolerance (using loudness discomfort level as indicators for hyperacusis severity), high tinnitus symptom severity based on the Tinnitus Handicap Inventory (THI), and tinnitus laterality. The primary efficacy endpoints are within-arm changes in THI and Tinnitus Functional Index as well as between-arm changes in THI after 6 weeks of treatment for the full cohort and two subgroups of tinnitus participants (ie, one hyperacusis subgroup and a high tinnitus symptom severity subgroup). Additional efficacy endpoints include within-arm or between-arm changes in THI after 6 or 12 weeks of treatment and in different subgroups of tinnitus participants as well as at posttreatment assessments at 6 weeks, 6 months, and 12 months. Treatment safety, attrition rates, and compliance rates will also be assessed and reported. RESULTS: This study protocol was approved by the Tallaght University Hospital/St. James's Hospital Joint Research Ethics Committee in Dublin, Ireland. The first participant was enrolled on March 20, 2018. The data collection and database lock are expected to be completed by February 2020, and the data analysis and manuscript submission are expected to be conducted in autumn of 2020. CONCLUSIONS: The findings of this study will be disseminated to relevant research, clinical, and health services and patient communities through publications in peer-reviewed journals and presentations at scientific and clinical conferences. TRIAL REGISTRATION: ClinicalTrials.gov NCT03530306; https://clinicaltrials.gov/ct2/show/NCT03530306. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/13176.

14.
SLAS Technol ; 24(4): 448-452, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31226243

RESUMO

A new study published in Nature Communications outlines our group's results using focused ultrasound stimulation within peripheral organs to precisely activate autonomic nerve circuits. The concept is demonstrated by modulating two different (and potentially therapeutic) targets in animal models, a neuroimmune connection in the spleen (that modulates blood cytokine concentrations) and a nutrient sensory pathway within the liver (that modulates metabolism). Connected to this work is a companion Nature Communications publication that utilizes an ultrasound stimulus focused on the spleen to reduce disease severity in a serum-transferred rodent model of inflammatory arthritis. These reports highlight the growing evidence that ultrasound energy (previously shown to enable activation or modulation of central nervous system pathways) may be used to perform peripheral neuromodulation. In this commentary, we highlight the main findings and discuss their implications for new forms of ultrasound-based therapy. Though challenges remain, a new noninvasive method for precision neuromodulation could solve many of the challenges facing the nascent field of bioelectronic medicine. That is, the use of ultrasound to directly modulate neurophysiological systems therapeutically may provide alternatives to traditional pharmaceuticals. However, to alter the current pharmaceutical paradigm, the field will need to develop a new understanding of how traditional drug concepts (such as dose and pharmacokinetics-pharmacodynamics) relate to the parameters, protocols, and outcomes of this new stimulation technology.


Assuntos
Terapia por Ultrassom , Vias Aferentes , Animais , Citocinas , Baço , Ultrassonografia
15.
Nat Commun ; 10(1): 951, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862842

RESUMO

Targeted noninvasive control of the nervous system and end-organs may enable safer and more effective treatment of multiple diseases compared to invasive devices or systemic medications. One target is the cholinergic anti-inflammatory pathway that consists of the vagus nerve to spleen circuit, which has been stimulated with implantable devices to improve autoimmune conditions such as rheumatoid arthritis. Here we report that daily noninvasive ultrasound (US) stimulation targeting the spleen significantly reduces disease severity in a mouse model of inflammatory arthritis. Improvements are observed only with specific parameters, in which US can provide both protective and therapeutic effects. Single cell RNA sequencing of splenocytes and experiments in genetically-immunodeficient mice reveal the importance of both T and B cell populations in the anti-inflammatory pathway. These findings demonstrate the potential for US stimulation of the spleen to treat inflammatory diseases.


Assuntos
Artrite Experimental/fisiopatologia , Artrite Experimental/terapia , Baço/inervação , Baço/fisiopatologia , Terapia por Ultrassom/métodos , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Artrite Reumatoide/terapia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fibras Colinérgicas/imunologia , Fibras Colinérgicas/fisiologia , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/imunologia , Neuroimunomodulação/genética , Baço/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Estimulação do Nervo Vago/métodos
16.
Sci Rep ; 9(1): 4171, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862850

RESUMO

Hearing impairment is one of the most common sensory deficits in humans. Hearing aids are helpful to patients but can have poor sound quality or transmission due to insufficient output or acoustic feedback, such as for high frequencies. Implantable devices partially overcome these issues but require surgery with limited locations for device attachment. Here, we investigate a new optoacoustic approach to vibrate the hearing organ with laser stimulation to improve frequency bandwidth, not requiring attachment to specific vibratory structures, and potentially reduce acoustic feedback. We developed a laser pulse modulation strategy and simulated its response at the umbo (1-10 kHz) based on a convolution-based model. We achieved frequency-specific activation in which non-contact laser stimulation of the umbo, as well as within the middle ear at the round window and otic capsule, induced precise shifts in the maximal vibratory response of the umbo and neural activation within the inferior colliculus of guinea pigs, corresponding to the targeted, modelled and then stimulated frequency. There was also no acoustic feedback detected from laser stimulation with our experimental setup. These findings open up the potential for using a convolution-based optoacoustic approach as a new type of laser hearing aid or middle ear implant.


Assuntos
Estimulação Acústica , Acústica , Vias Auditivas/fisiologia , Óptica e Fotônica , Animais , Nervo Coclear/fisiologia , Simulação por Computador , Orelha Média/fisiologia , Cobaias , Reprodutibilidade dos Testes , Vibração
18.
Neuron ; 98(5): 1020-1030.e4, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29804919

RESUMO

Ultrasound (US) can noninvasively activate intact brain circuits, making it a promising neuromodulation technique. However, little is known about the underlying mechanism. Here, we apply transcranial US and perform brain mapping studies in guinea pigs using extracellular electrophysiology. We find that US elicits extensive activation across cortical and subcortical brain regions. However, transection of the auditory nerves or removal of cochlear fluids eliminates the US-induced activity, revealing an indirect auditory mechanism for US neural activation. Our findings indicate that US activates the ascending auditory system through a cochlear pathway, which can activate other non-auditory regions through cross-modal projections. This cochlear pathway mechanism challenges the idea that US can directly activate neurons in the intact brain, suggesting that future US stimulation studies will need to control for this effect to reach reliable conclusions.


Assuntos
Córtex Auditivo/efeitos da radiação , Vias Auditivas/efeitos da radiação , Cóclea/efeitos da radiação , Nervo Coclear/efeitos da radiação , Fenômenos Eletrofisiológicos/efeitos da radiação , Neurônios/efeitos da radiação , Ondas Ultrassônicas , Animais , Encéfalo/efeitos da radiação , Mapeamento Encefálico , Córtex Cerebral/efeitos da radiação , Cobaias
19.
IEEE Trans Biomed Circuits Syst ; 11(6): 1290-1302, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28809707

RESUMO

Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.


Assuntos
Compressão de Dados/métodos , Potenciais de Ação/fisiologia , Algoritmos , Humanos , Neurônios/fisiologia , Análise de Componente Principal , Processamento de Sinais Assistido por Computador , Tecnologia sem Fio/instrumentação
20.
PLoS One ; 10(6): e0128743, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26046763

RESUMO

Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.


Assuntos
Córtex Auditivo/fisiopatologia , Tronco Encefálico/fisiopatologia , Cóclea/fisiopatologia , Lobo Frontal/fisiopatologia , Perda Auditiva Bilateral/fisiopatologia , Percepção da Fala/fisiologia , Estimulação Acústica , Adaptação Fisiológica , Adulto , Idoso , Córtex Auditivo/patologia , Córtex Auditivo/cirurgia , Mapeamento Encefálico , Tronco Encefálico/patologia , Tronco Encefálico/cirurgia , Cóclea/patologia , Cóclea/cirurgia , Implante Coclear , Implantes Cocleares , Eletrodos , Feminino , Lobo Frontal/patologia , Lobo Frontal/cirurgia , Perda Auditiva Bilateral/patologia , Perda Auditiva Bilateral/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Recuperação de Função Fisiológica , Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...