Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905014

RESUMO

When it is necessary to detect various physiological signals of the human body, clothing embroidered with near-field effect patterns can be used as a long-term power supply medium to supply power to long-distance transmitters and receivers to form a wireless power supply system. The proposed system uses an optimized parallel circuit to achieve a power transfer efficiency of more than five times higher than that of the existing series circuit. The power transfer efficiency of simultaneously supplying energy to multiple sensors is increased higher than five times and even more when only one sensor is coupled. When powering eight sensors at the same time, the power transmission efficiency can reach 25.1%. Even when eight sensors powered by the coupled textile coils are reduced to one, the power transfer efficiency of the whole system can reach 13.21%. Additionally, the proposed system is also applicable when the number of sensors ranges from 2 to 12.

2.
Biomed Eng Lett ; 12(3): 219-228, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35892032

RESUMO

Trends of medical system move from a traditional in-person visit to virtual healthcare increases demands on point-of-care devices. Because ultrasound (US) is non-invasive, the demands highlight US imaging among other imaging modalities. Thanks to the development of US transducer technology, miniaturized US with application-specific integrated circuits (ASIC) have been researched. For example, applications that require small aperture sizes such as intravascular US (IVUS) and intra-cardiac echocardiography (ICE) require integration of system-on-a-chip (SoC) on the transducer. This paper reviews circuit techniques on the transmitter (TX) and receiver (RX) of the US imaging system. As TX circuits, pulser, T/RX switch, TX beamformer, and power management circuits are discussed. State-of-the-art transducer modeling, pre-amplifier, time-gain compensation, RX beamformer, quadrature sampler, and output driver are introduced as RX circuits.

3.
IEEE J Solid-State Circuits ; 55(5): 1310-1323, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32341598

RESUMO

In this article, we present a highly integrated guidewire ultrasound (US) imaging system-on-a-chip (GUISoC) for vascular imaging. The SoC consists of a 16-channel US transmitter (Tx) and receiver (Rx) electronics, on-chip power management IC (PMIC), and quadrature sampler. Using a synthetic aperture imaging algorithm, a Tx/Rx pair, connected to capacitive micromachined ultrasound transducers (CMUTs), can be activated at any time. The Tx generates acoustic waves by driving the CMUT, while the Rx picks up the echo signal and amplify it to be delivered through an interconnect that is driven by a buffer. On-chip logic controls the pulsers that generate the high-voltage (HV)-pulse for Tx. An on-chip PMIC provides 1.8-, 5-, 39-, and 44-V supplies and a clock signal from the two interconnects besides GND. A quadrature sampler down-converts the Rx echo signal to baseband, reducing its bandwidth requirement for the output interconnect. The system design, including transimpedance amplifier (TIA) optimization, based on the equivalent circuit of a specific CMUT is presented. The SoC was fabricated by a 0.18-µm HV CMOS process, occupying 1.5-mm2 active area and consuming 25.2 and 44 mW from 1.8 to 44 V supplies, respectively. The US Tx and Rx show bandwidths of 32-42 and 32.7-37.5 MHz, respectively. The input-referred noise of the system was measured as 9.66 nA in band with 2-m-long 52 American Wire Gauge (AWG) wire interconnects. The functionality of the GUISoC was verified in vitro by imaging wire targets.

4.
IEEE Sens J ; 19(2): 603-614, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31572068

RESUMO

A sensor interface circuit based on impulse radio pulse width modulation (IR-PWM) is presented for low power and high throughput wireless data acquisition systems (wDAQ) with extreme size and power constraints. Two triple-slope analog-to-time converters (ATC) convert two analog signals, each up to 5 MHz in bandwidth, into PWM signals, and an impulse radio (IR) transmitted (Tx) with an all-digital power amplifier (PA) combines them while preserving the timing information by transmitting impulses at the PWM rising and falling edges. On the receiver (Rx) side, an RF-LNA followed by an envelope detector recovers the incoming impulses, and a T-flipflop reverts the impulse sequence back to PWM to be digitized by a time-to-digital converter (TDC). Detailed analysis and design guideline on ATC was introduced, and a proof-of-concept prototype was fabricated for a capacitive micromachined ultrasound transducer (CMUT) imaging system in a 0.18-µm HV CMOS process, occupying 0.18 mm2 active area and consuming 3.94 mW from a 1.8 V supply. The proposed TDC in this prototype yielded 7-bit resolution, while the entire wDAQ achieved 5.8 effective number of bits (ENOB) at 2 × 10 MS/s.

5.
IEEE Trans Ind Electron ; 65(2): 1645-1654, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29249849

RESUMO

This paper presents the design procedure for a new multi-cycle resonance-based voltage boosting rectifier (MCRR) capable of delivering a desired amount of power to the load (PDL) at a designated high voltage (HV) through a loosely-coupled inductive link. This is achieved by shorting the receiver (Rx) LC-tank for several cycles to harvest and accumulate the wireless energy in the RX inductor before boosting the voltage by breaking the loop and transferring the energy to the load in a quarter cycle. By optimizing the geometries of the transmitter (Tx) and Rx coils and the number of cycles, N, for energy harvesting, through an iterative design procedure, the MCRR can achieve the highest PDL under a given set of design constraints. Governing equations in the MCRR operation are derived to identify key specifications and the design guidelines. Using an exemplary set of specs, the optimized MCRR was able to generate 20.9 VDC across a 100 kΩ load from a 1.8 Vp, 6.78 MHz sinusoid input in the ISM-band at a Tx/Rx coil separation of 1.3 cm, power transfer efficiency (PTE) of 2.2%, and N = 9 cycles. At the same coil distance and loading, coils optimized for a conventional half-wave rectifier (CHWR) were able to reach only 13.6 VDC from the same source.

6.
IEEE Trans Biomed Circuits Syst ; 11(6): 1366-1376, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29293426

RESUMO

This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm2 data-Tx/power-Rx coil is implemented using insulated bonding wire with diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was and in the air and tissue environments, respectively.


Assuntos
Próteses e Implantes , Telemetria/métodos , Desenho de Equipamento , Tecnologia sem Fio/instrumentação
7.
IEEE Trans Biomed Circuits Syst ; 11(2): 400-410, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27662686

RESUMO

Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 [Formula: see text] in a 0.35- [Formula: see text] standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Transdutores , Ultrassonografia de Intervenção/instrumentação , Amplificadores Eletrônicos , Desenho de Equipamento , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-25571135

RESUMO

We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-µm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Ultrassonografia/instrumentação , Amplificadores Eletrônicos , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Telemetria , Transdutores
9.
J Microbiol Biotechnol ; 18(8): 1357-63, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18756094

RESUMO

The PentC promoter of the entCEBA operon encoding enzymes for enterobactin biosynthesis in Escherichia coli is tightly regulated by the availability of iron in the culture medium. In iron-rich conditions, the PentC promoter activity is strongly repressed by the global transcription regulator Fur (ferric uptake regulator), which complexes with ferrous ions and binds to the Fur box 19-bp inverted repeat. In this study, we have constructed the expression vector pOS2 containing the PentC promoter and characterized its repression, induction, and modulation by quantifying the expression of the lacZ reporter gene encoding beta- galactosidase. Beta-galactosidase activities of E. coli transformants harboring pOS2-lacZ were highly induced in the presence of divalent metal ion chelators such as 2,2'-dipyridyl and EDTA, and were strongly repressed in the presence of excess iron. It was also shown that the basal level beta-galactosidase expression by the PentC promoter was drastically decreased by incorporating the fur gene into the expression vector. Since the newly developed iron chelator-inducible expression system is efficient and cost-effective, it has wide applications in recombinant protein production.


Assuntos
Enterobactina/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Quelantes de Ferro/farmacologia , Ferro/metabolismo , 2,2'-Dipiridil/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Ácido Edético/farmacologia , Enterobactina/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética , Dados de Sequência Molecular , Plasmídeos/química , Plasmídeos/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...