Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wound Repair Regen ; 24(4): 686-94, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27237949

RESUMO

As wound contraction in the cutaneous layer occurs rapidly in mice, mechanical means are typically used to deliberately expose the wound to properly investigate healing by secondary intention. Previously, silicon rings and splinting models were attempted to analyze histological recovery but prevention of surrounding epidermal cell migration and subsequent closure was minimal. Here, we developed an ideal chimney wound model to evaluate epidermal regeneration in murine under hESC-EC transplantation through histological analysis encompassing the three phases of regeneration: migration, proliferation, and remodeling. Human embryonic stem cell derived endothelial cells (hESC-EC) were transplanted due to possessing a well-known therapeutic effect in angiogenesis which also enhances epidermal repair to depict the process of regeneration. Following a standard 1 mm biopsy punch, a chimney manufactured by modifying a 1.7 mL microtube was simply inserted into the excisional wound to complete the modeling process. Under this model, the excisional wound remained fully exposed for 14 days and even after 4 weeks, only a thin transparent layer of epidermal tissue covered the wound site. This approach is able to more accurately depict epidermal repair in relation to histology while also being a user-friendly and cost-effective way to mimic human recovery in rodents and evaluate epithelial repair induced by a form of therapy.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Embrionárias Humanas/transplante , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Cicatrização/fisiologia , Ferimentos Penetrantes/fisiopatologia , Animais , Colágeno Tipo VIII/metabolismo , Análise Custo-Benefício , Modelos Animais de Doenças , Células Endoteliais/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ferimentos Penetrantes/terapia
2.
Biomaterials ; 34(4): 995-1003, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23127335

RESUMO

Endothelial progenitor cells (EPCs) promote new blood vessel formation and increase angiogenesis by secreting growth factors and cytokines in ischemic tissues. Therefore, EPCs have been highlighted as an alternative cell source for wound healing. EPCs can be isolated from various sources, including the bone marrow, cord blood, and adipose tissue. However, several recent studies have reported that isolating EPCs from these sources has limitations, such as the isolation of insufficient cell numbers and the difficulty of expanding these cells in culture. Thus, human embryonic stem cells (hESCs) have generated great interest as an alternative source of EPCs. Previously, we established an efficient preparation method to obtain EPCs from hESCs (hESC-EPCs). These hESC-EPCs secreted growth factors and cytokines, which are known to be important in angiogenesis and wound healing. In this study, we directly compared the capacity of hESC-EPCs and human cord blood-derived EPCs (hCB-EPCs) to benefit wound healing. The number of hESC-EPCs increased during culture and was always higher than the number of hCB-EPCs during the culture period. In addition, the levels of VEGF and Ang-1 secreted by hESC-EPCs were significantly higher than those produced by hCB-EPCs. After transplantation in a mouse dermal excisional wound model, all EPC-transplanted wounds exhibited better regeneration than in the control group. More importantly, we found that the wounds transplanted with hESC-EPCs showed significantly accelerated re-epithelialization. Thus, hESC-EPCs may be a promising cell source for the treatment of chronic wounds.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Células Endoteliais/citologia , Células Endoteliais/transplante , Ferimentos Penetrantes/patologia , Ferimentos Penetrantes/cirurgia , Animais , Diferenciação Celular , Linhagem Celular , Doença Crônica , Humanos , Masculino , Camundongos , Camundongos Nus , Resultado do Tratamento , Cicatrização
3.
Stem Cell Res ; 6(1): 50-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20920899

RESUMO

The therapeutic potential of human embryonic stem cells (hESCs) has long been appreciated, and the recent FDA approval of hESC derivatives for cell-based therapy encourages the clinical application of hESCs. Here, using CHA3-hESCs with normal and abnormal karyotypes, we report the importance of maintaining normal chromosomes during in vitro culture and the differentiation of hESCs for minimization of posttransplantation complications. We found that undifferentiated CHA3-hESCs with trisomy chromosome 12 undergo abnormal cell division with multiple spindles in comparison to the bipolar cell division of the karyotypically normal CHA3-hESCs. Transplanted karyotypically abnormal CHA3-hESC derivatives formed a tumor-like tissue 6weeks after transplantation in two out of seven mice tested. Our results demonstrate that the preservation of normal chromosomes is indispensable for maintaining the true properties of hESCs in vitro and abolishing adverse effects posttransplantation. Thus, the development of optimized techniques for stabilizing the chromosome state during in vitro hESC culture is a prerequisite for the therapeutic application of hESCs.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Instabilidade Cromossômica , Células-Tronco Embrionárias/citologia , Animais , Divisão Celular , Linhagem Celular , Aberrações Cromossômicas , Humanos , Cariotipagem , Masculino , Camundongos , Camundongos Nus
4.
J Korean Med Sci ; 25(5): 663-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20436699

RESUMO

To evaluate the effectiveness of the human umbilical cord blood (HUCB) transplantation for the treatment of intrinsic sphincter deficiency (ISD), we analyzed the short term effects of HUCB mononuclear cell transplantation in rats with induced-ISD. ISD was induced in rats by electro-cauterization of periurethral soft tissue with HUCB mononuclear cell injection after 1 week. The sphincter function measured by mean leak point pressure was significantly improved in the experimental group compared to the control group at 4 weeks. (91.75+/-18.99 mmHg vs. 65.02+/-22.09 mmHg, P=0.001). Histologically, the sphincter muscle was restored without damage while in the control group it appeared markedly disrupted with atrophic muscle layers and collagen deposit. We identified injected HUCB cells in the tissue sections by Di-I signal and Prussian blue staining. HUCB mononuclear cell injection significantly improved urethral sphincter function, suggesting its potential efficacy in the treatment of ISD.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Leucócitos Mononucleares/transplante , Incontinência Urinária por Estresse/fisiopatologia , Incontinência Urinária por Estresse/cirurgia , Procedimentos Cirúrgicos Urológicos/métodos , Animais , Células Cultivadas , Humanos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Incontinência Urinária por Estresse/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...