Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 7(5): 741-5, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26859047

RESUMO

The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Espectrofotometria Infravermelho/métodos , Água/química , Ligação de Hidrogênio
2.
J Phys Chem Lett ; 6(14): 2773-9, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26266862

RESUMO

Osmolytes are an integral part of living organism, e.g., the kidney uses sorbitol, trimethylglycine, taurine and myo-inositol to counter the deleterious effects of urea and salt. Therefore, knowing that the osmolytes' act either directly to the protein or mediated through water is of great importance. Our experimental and computational results show that protecting osmolytes, e.g., trimethylglycine and sorbitol, significantly modulate the water H-bonding network structure, although the magnitude and spatial extent of osmolyte-induced perturbation greatly vary. In contrast, urea behaves neutrally toward local water H-bonding network. Protecting osmolytes studied here show strong concentration-dependent behaviors (vibrational frequencies and lifetimes of two different infrared (IR) probes), while denaturant does not. The H-bond donor and/or acceptor (OH/NH) in a given osmolyte molecule play a critical role in defining their action. Our findings highlight the significance of the alteration of H-bonding network of water under biologically relevant environment, often encountered in real biological systems.

3.
J Phys Chem A ; 119(21): 5356-67, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494003

RESUMO

A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen-bonding of HOD is found to significantly hinder the initial intramolecular energy transfer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...