Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 964640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979220

RESUMO

Shigella flexneri is a major diarrhoeal pathogen, and the emergence of multidrug-resistant S. flexneri is of public health concern. We report the detection of a clonal cluster of multidrug-resistant serotype 1c (7a) S. flexneri in Singapore in April 2022. Long-read whole-genome sequence analysis found five S. flexneri isolates to be clonal and harboring the extended-spectrum ß-lactamases bla CTX-M-15 and bla TEM-1. The isolates were phenotypically resistant to ceftriaxone and had intermediate susceptibility to ciprofloxacin. The S. flexneri clonal cluster was first detected in a tertiary hospital diagnostic laboratory (sentinel-site), to which the S. flexneri isolates were sent from other hospitals for routine serogrouping. Long-read whole-genome sequence analysis was performed in the sentinel-site near real-time in view of the unusually high number of S. flexneri isolates received within a short time frame. This study demonstrates that near real-time sentinel-site sequence-based surveillance of convenience samples can detect possible clonal outbreak clusters and may provide alerts useful for public health mitigations at the earliest possible opportunity.

2.
Nat Ecol Evol ; 4(9): 1256-1267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632261

RESUMO

Loss of diversity in the gut microbiome can persist for extended periods after antibiotic treatment, impacting microbiome function, antimicrobial resistance and probably host health. Despite widespread antibiotic use, our understanding of the species and metabolic functions contributing to gut microbiome recovery is limited. Using data from 4 discovery cohorts in 3 continents comprising >500 microbiome profiles from 117 individuals, we identified 21 bacterial species exhibiting robust association with ecological recovery post antibiotic therapy. Functional and growth-rate analysis showed that recovery is supported by enrichment in specific carbohydrate-degradation and energy-production pathways. Association rule mining on 782 microbiome profiles from the MEDUSA database enabled reconstruction of the gut microbial 'food web', identifying many recovery-associated bacteria as keystone species, with the ability to use host- and diet-derived energy sources, and support repopulation of other gut species. Experiments in a mouse model recapitulated the ability of recovery-associated bacteria (Bacteroides thetaiotaomicron and Bifidobacterium adolescentis) to promote recovery with synergistic effects, providing a boost of two orders of magnitude to microbial abundance in early time points and faster maturation of microbial diversity. The identification of specific species and metabolic functions promoting recovery opens up opportunities for rationally determining pre- and probiotic formulations offering protection from long-term consequences of frequent antibiotic usage.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos , Bactérias/genética , Humanos , Metagenoma , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...