Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786066

RESUMO

Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.


Assuntos
Movimento Celular , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Animais , Linfócitos/imunologia , Linfócitos/metabolismo , Transdução de Sinais
2.
Nat Immunol ; 24(6): 1007-1019, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069398

RESUMO

Adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells is becoming a promising treatment option for hematological malignancies. However, T cell immunotherapies have mostly failed in individuals with solid tumors. Here, with a CRISPR-Cas9 pooled library, we performed an in vivo targeted loss-of-function screen and identified ST3 ß-galactoside α-2,3-sialyltransferase 1 (ST3GAL1) as a negative regulator of the cancer-specific migration of CAR T cells. Analysis of glycosylated proteins revealed that CD18 is a major effector of ST3GAL1 in activated CD8+ T cells. ST3GAL1-mediated glycosylation induces the spontaneous nonspecific tissue sequestration of T cells by altering lymphocyte function-associated antigen-1 (LFA-1) endocytic recycling. Engineered CAR T cells with enhanced expression of ßII-spectrin, a central LFA-1-associated cytoskeleton molecule, reversed ST3GAL1-mediated nonspecific T cell migration and reduced tumor growth in mice by improving tumor-specific homing of CAR T cells. These findings identify the ST3GAL1-ßII-spectrin axis as a major cell-intrinsic program for cancer-targeting CAR T cell migration and as a promising strategy for effective T cell immunotherapy.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Movimento Celular , Imunoterapia Adotiva , Antígeno-1 Associado à Função Linfocitária , Espectrina , Humanos , Feminino
3.
Immunol Cell Biol ; 101(2): 130-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318273

RESUMO

Protein kinase D (PKD) is a serine/threonine kinase family with three isoforms (PKD1-3) that are expressed in most cells and implicated in a wide array of signaling pathways, including cell growth, differentiation, transcription, secretion, polarization and actin turnover. Despite growing interest in PKD, relatively little is known about the role of PKD in immune responses. We recently published that inhibiting PKD limits proinflammatory cytokine secretion and leukocyte accumulation in mouse models of viral infection, and that PKD3 is highly expressed in the murine lung and immune cell populations. Here we focus on the immune-related phenotypes of PKD3 knockout mice. We report that PKD3 is necessary for maximal neutrophil accumulation in the lung following challenge with inhaled polyinosinic:polycytidylic acid, a double-stranded RNA, as well as following influenza A virus infection. Using reciprocal bone marrow chimeras, we found that PKD3 is required in the hematopoietic compartment for optimal neutrophil migration to the lung. Ex vivo transwell and chemokinesis assays confirmed that PKD3-/- neutrophils possess an intrinsic motility defect, partly because of reduced surface expression of CD18, which is critical for leukocyte migration. Finally, the peak of neutrophilia was significantly reduced in PKD3-/- mice after lethal influenza A virus infection. Together, these results demonstrate that PKD3 has an essential, and nonredundant, role in promoting neutrophil recruitment to the lung. A better understanding of the isoform-specific and cell type-specific activities of PKD has the potential to lead to novel therapeutics for respiratory illnesses.


Assuntos
Neutrófilos , Proteína Quinase C , Viroses , Animais , Camundongos , Neutrófilos/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Proteína Quinase C/metabolismo
4.
Front Immunol ; 13: 965305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983035

RESUMO

Sepsis is a life-threatening systemic inflammatory condition causing approximately 11 million annual deaths worldwide. Although key hyperinflammation-based organ dysfunctions that drive disease pathology have been recognized, our understanding of the factors that predispose patients to septic mortality is limited. Due to the lack of reliable prognostic measures, the development of appropriate clinical management that improves patient survival remains challenging. Here, we discovered that a subpopulation of CD49chigh neutrophils with dramatic upregulation of the complement component 1q (C1q) gene expression arises during severe sepsis. We further found that deceased septic patients failed to maintain C1q protein expression in their neutrophils, whereas septic survivors expressed higher levels of C1q. In mouse sepsis models, blocking C1q with neutralizing antibodies or conditionally knocking out C1q in neutrophils led to a significant increase in septic mortality. Apoptotic neutrophils release C1q to control their own clearance in critically injured organs during sepsis; thus, treatment of septic mice with C1q drastically increased survival. These results suggest that neutrophil C1q is a reliable prognostic biomarker of septic mortality and a potential novel therapeutic target for the treatment of sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Complemento C1q/genética , Modelos Animais de Doenças , Humanos , Camundongos , Sepse/mortalidade , Regulação para Cima
5.
Front Immunol ; 12: 666231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149701

RESUMO

Although cancer immunotherapy is effective against hematological malignancies, it is less effective against solid tumors due in part to significant metabolic challenges present in the tumor microenvironment (TME), where infiltrated CD8+ T cells face fierce competition with cancer cells for limited nutrients. Strong metabolic suppression in the TME is often associated with impaired T cell recruitment to the tumor site and hyporesponsive effector function via T cell exhaustion. Increasing evidence suggests that mitochondria play a key role in CD8+ T cell activation, effector function, and persistence in tumors. In this study, we showed that there was an increase in overall mitochondrial function, including mitochondrial mass and membrane potential, during both mouse and human CD8+ T cell activation. CD8+ T cell mitochondrial membrane potential was closely correlated with granzyme B and IFN-γ production, demonstrating the significance of mitochondria in effector T cell function. Additionally, activated CD8+ T cells that migrate on ICAM-1 and CXCL12 consumed significantly more oxygen than stationary CD8+ T cells. Inhibition of mitochondrial respiration decreased the velocity of CD8+ T cell migration, indicating the importance of mitochondrial metabolism in CD8+ T cell migration. Remote optical stimulation of CD8+ T cells that express our newly developed "OptoMito-On" successfully enhanced mitochondrial ATP production and improved overall CD8+ T cell migration and effector function. Our study provides new insight into the effect of the mitochondrial membrane potential on CD8+ T cell effector function and demonstrates the development of a novel optogenetic technique to remotely control T cell metabolism and effector function at the target tumor site with outstanding specificity and temporospatial resolution.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos da radiação , Optogenética/métodos , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/efeitos da radiação , Citocinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Humanos , Imunoterapia , Ativação Linfocitária/efeitos da radiação , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Neoplasias/imunologia , Neoplasias/terapia
6.
Nat Immunol ; 21(9): 1046-1057, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747818

RESUMO

Early recruitment of neutrophils from the blood to sites of tissue infection is a hallmark of innate immune responses. However, little is known about the mechanisms by which apoptotic neutrophils are cleared in infected tissues during resolution and the immunological consequences of in situ efferocytosis. Using intravital multiphoton microscopy, we show previously unrecognized motility patterns of interactions between neutrophils and tissue-resident phagocytes within the influenza-infected mouse airway. Newly infiltrated inflammatory monocytes become a chief pool of phagocytes and play a key role in the clearance of highly motile apoptotic neutrophils during the resolution phase. Apoptotic neutrophils further release epidermal growth factor and promote the differentiation of monocytes into tissue-resident antigen-presenting cells for activation of antiviral T cell effector functions. Collectively, these results suggest that the presence of in situ neutrophil resolution at the infected tissue is critical for optimal CD8+ T cell-mediated immune protection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Fagócitos/imunologia , Receptores CCR2/metabolismo , Animais , Apresentação de Antígeno , Apoptose , Movimento Celular , Células Cultivadas , Humanos , Imunidade Inata , Microscopia Intravital , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Receptores CCR2/genética
7.
J Stroke Cerebrovasc Dis ; 29(9): 104942, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807413

RESUMO

BACKGROUND AND OBJECTIVES: Studies implicate the lung in moderating systemic immune activation via effects on circulating leukocytes. In this study, we investigated whether targeted expression of the antioxidant extracellular superoxide dismutase (SOD3) within the lung would influence post-ischemic peripheral neutrophil activation and CNS reperfusion injury. METHODS: Adult, male mice expressing human SOD3 within type II pneumocytes were subjected to 15 min of transient global cerebral ischemia. Three days post-reperfusion, lung and brain tissue was collected and analyzed by immunohistochemistry for inflammation and injury markers. In vitro motility and neurotoxicity assays were conducted to ascertain the direct effects of hSOD3 on PMN activation. Results were compared against C57BL/6 age and sex-matched controls. RESULTS: Relative to wild-type controls, hSOD3 heterozygous mice exhibited a reduction in lung inflammation, blood-brain barrier damage, and post-ischemic neuronal injury within the hippocampus and cortex. PMNs harvested from hSOD3 mice were also resistant to LPS priming, slower-moving, and less toxic to primary neuronal cultures. CONCLUSIONS: Constitutive, focal expression of hSOD3 is neuroprotective in a model of global cerebral ischemia-reperfusion injury. The underlying mechanism of SOD3-dependent protection is attributable in part to effects on the activation state and toxic potential of circulating neutrophils. These results implicate lung-brain coupling as a determinant of cerebral ischemia-reperfusion injury and highlight post-stroke lung inflammation as a potential therapeutic target in acute ischemic cerebrovascular injuries.


Assuntos
Células Epiteliais Alveolares/enzimologia , Isquemia Encefálica/enzimologia , Encéfalo/metabolismo , Neurônios/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Pneumonia/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade Inata , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Neutrófilos/imunologia , Pneumonia/enzimologia , Pneumonia/genética , Pneumonia/imunologia , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Transdução de Sinais , Superóxido Dismutase/genética
8.
Front Immunol ; 9: 3063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671055

RESUMO

The chemokine CCL7 (MCP3) is known to promote the recruitment of many innate immune cell types including monocytes and neutrophils to sites of bacterial and viral infection and eosinophils and basophils to sites of allergic inflammation. CCL7 upregulation has been associated with many inflammatory settings including infection, cardiovascular disease, and the tumor microenvironment. CCL7's pleotropic effects are due in part to its ability to bind numerous chemokine receptors, namely CCR1, CCR2, CCR3, CCR5, and CCR10. CCL7-blockade or CCL7-deficiency is often marked by decreased inflammation and poor pathogen control. In the context of Leishmania major infection, CCL7 is specifically upregulated in the skin one-2 weeks after infection but its role in L. major control is unclear. To determine CCL7's impact on the response to L. major we infected WT and CCL7-/- C57BL/6 mice. L. major infection of CCL7-deficient mice led to an unexpected increase in inflammation in the infected skin 2 weeks post-infection. A broad increase in immune cell subsets was observed but was dominated by enhanced neutrophilic infiltration. Increased neutrophil recruitment was associated with an enhanced IL-17 gene profile in the infected skin. CCL7 was shown to directly antagonize neutrophil migration in vitro and CCL7 add-back in vivo specifically reduced neutrophil influx into the infected skin revealing an unexpected role for CCL7 in limiting neutrophil recruitment during L. major infection. Enhanced neutrophilic infiltration in CCL7-deficient mice changed the balance of L. major infected host cells with an increase in the ratio of infected neutrophils over monocytes/macrophages. To determine the consequence of CCL7 deficiency on L. major control we analyzed parasite load cutaneously at the site of infection and viscerally in the draining LN and spleen. The CCL7-/- mice supported robust cutaneous parasite control similar to their WT C57BL/6 counterparts. In contrast, CCL7-deficiency led to greater parasite dissemination and poor parasite control in the spleen. Our studies reveal a novel role for CCL7 in negatively regulating cutaneous inflammation, specifically neutrophils, early during L. major infection. We propose that CCL7-mediated dampening of the early immune response in the skin may limit the ability of the parasite to disseminate without compromising cutaneous control.


Assuntos
Quimiocina CCL7/imunologia , Quimiocina CCL7/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Análise de Variância , Animais , Movimento Celular , Quimiocina CCL7/genética , Quimiocina CXCL2/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Interleucina-17/genética , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/fisiologia , Estatísticas não Paramétricas
9.
J Cell Biol ; 216(11): 3817-3829, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28954823

RESUMO

The integrin lymphocyte function-associated antigen 1 (LFA-1; CD11a/CD18) is a key T cell adhesion receptor that mediates stable interactions with antigen-presenting cell (APC), as well as chemokine-mediated migration. Using our newly generated CD11a-mYFP knock-in mice, we discovered that naive CD8+ T cells reserve a significant intracellular pool of LFA-1 in the uropod during migration. Intracellular LFA-1 quickly translocated to the cell surface with antigenic stimulus. Importantly, the redistribution of intracellular LFA-1 at the contact with APC was maintained during cell division and led to an unequal inheritance of LFA-1 in divided T cells. The daughter CD8+ T cells with disparate LFA-1 expression showed different patterns of migration on ICAM-1, APC interactions, and tissue retention, as well as altered effector functions. In addition, we identified Rab27 as an important regulator of the intracellular LFA-1 translocation. Collectively, our data demonstrate that an intracellular pool of LFA-1 in naive CD8+ T cells plays a key role in T cell activation and differentiation.


Assuntos
Antígeno CD11a/metabolismo , Antígenos CD18/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD11a/genética , Antígeno CD11a/imunologia , Antígenos CD18/genética , Antígenos CD18/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Quimiotaxia de Leucócito , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/imunologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose , Transporte Proteico , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Fatores de Tempo , Proteínas rab de Ligação ao GTP/metabolismo
10.
Biochem Biophys Res Commun ; 468(1-2): 349-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26499076

RESUMO

Glycolysis, the primary pathway metabolizing glucose for energy production, is connected to the hexosamine biosynthetic pathway (HBP) which produces UDP-N-acetylglucosamine (UDP-GlcNAc), a GlcNAc donor for O-linked GlcNAc modification (O-GlcNAc), as well as for traditional elongated glycosylation. Thus, glycolysis and O-GlcNAc are intimately associated. The present study reports the transcriptional activation of glycolytic genes by the transcription factor Sp1 and the O-GlcNAc-mediated suppression of Sp1-dependent activation of glycolytic genes. O-GlcNAc-deficient mutant Sp1 stimulated the transcription of nine glycolytic genes and cellular production of pyruvate, the final product of glycolysis, to a greater extent than wild-type Sp1. Consistently, this mutant Sp1 increased the protein levels of the two key glycolytic enzymes, phosphofructokinase (PFK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), to a greater extent than wild-type Sp1. Finally, the mutant Sp1 occupied GC-rich elements on PFK and GAPDH promoters more efficiently than wild-type Sp1. These results suggest that O-GlcNAcylation of Sp1 suppresses Sp1-mediated activation of glycolytic gene transcription.


Assuntos
Glicólise , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional , Uridina Difosfato N-Acetilglicosamina/metabolismo , Sequência de Bases , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação , Fosfofrutoquinases/genética , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética , Uridina Difosfato N-Acetilglicosamina/genética
11.
Biochem Biophys Res Commun ; 467(2): 341-7, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26431879

RESUMO

The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome.


Assuntos
Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Fator de Transcrição Sp3/metabolismo , Fator de Transcrição Sp4/metabolismo , Transcrição Gênica , Escherichia coli , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Transdução de Sinais , Fator de Transcrição Sp2/genética , Fator de Transcrição Sp2/metabolismo , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp4/genética , Treonina/metabolismo
12.
J Immunol Methods ; 426: 120-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342259

RESUMO

ß2 integrins play critical roles in migration of immune cells and in the interaction with other cells, pathogens, and the extracellular matrix. Among the ß2 integrins, Mac-1 (Macrophage antigen-1), composed of CD11b and CD18, is mainly expressed in innate immune cells and plays a major role in cell migration and trafficking. In order to image Mac-1-expressing cells both in live cells and mouse, we generated a knock-in (KI) mouse strain expressing CD11b conjugated with monomeric yellow fluorescent protein (mYFP). Expression of CD11b-mYFP protein was confirmed by Western blot and silver staining of CD11b-immunoprecipitates and total cell lysates from the mouse splenocytes. Mac-1-mediated functions of the KI neutrophils were comparable with those in WT cells. The fluorescence intensity of CD11b-mYFP was sufficient to image CD11b expressing cells in live mice using intravital two-photon microscopy. In vitro, dynamic changes in the intracellular localization of CD11b molecules could be measured by epifluorescent microscopy. Finally, CD11b-expressing immune cells from tissue were easily detected by flow cytometry without anti-CD11b antibody staining.


Assuntos
Antígeno CD11b/imunologia , Antígeno de Macrófago 1/análise , Antígeno de Macrófago 1/imunologia , Neutrófilos/imunologia , Baço/citologia , Animais , Proteínas de Bactérias/genética , Antígenos CD18/imunologia , Adesão Celular , Movimento Celular/imunologia , Matriz Extracelular/imunologia , Citometria de Fluxo , Técnicas de Introdução de Genes , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Fagocitose/imunologia , Baço/imunologia , Coloração e Rotulagem/métodos
13.
Science ; 349(6252): aaa4352, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26339033

RESUMO

During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells are unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8(+) T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditionally depleted mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8(+) T cell recruitment and effector functions. Collectively, these results suggest that neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8(+) T cell migration and localization in influenza-infected tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL12/imunologia , Quimiotaxia/imunologia , Vírus da Influenza A/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Traqueia/imunologia , Animais , Benzilaminas , Quimiocina CXCL12/farmacologia , Ciclamos , Compostos Heterocíclicos/farmacologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutropenia/imunologia , Neutrófilos/virologia , Traqueia/virologia
14.
Blood ; 124(24): 3515-23, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25278585

RESUMO

Integrin-mediated migration of neutrophils to infected tissue sites is vital for pathogen clearance and therefore host survival. Although ß2 integrins have been shown to mediate neutrophil transendothelial migration during systemic and local inflammation, relatively little information is available regarding neutrophil migration in sepsis beyond the endothelial cell layer. In this study, we report that integrin α3ß1 (VLA-3; CD49c/CD29) is dramatically upregulated on neutrophils isolated from both human septic patients and in mouse models of sepsis. Compared with the α3ß1 (low) granulocytes, α3ß1 (high) cells from septic animals displayed hyperinflammatory phenotypes. Administration of a α3ß1 blocking peptide and conditional deletion of α3 in granulocytes significantly reduced the number of extravasating neutrophils and improved survival in septic mice. In addition, expression of α3ß1 on neutrophils was associated with Toll-like receptor-induced inflammatory responses and cytokine productions. Thus, our results show that α3ß1 is a novel marker of tissue homing and hyperresponsive neutrophil subtypes in sepsis, and blocking of α3ß1 may represent a new therapeutic approach in sepsis treatment.


Assuntos
Citocinas/imunologia , Integrina alfa3beta1/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Sepse/imunologia , Receptores Toll-Like/imunologia , Animais , Citocinas/genética , Modelos Animais de Doenças , Humanos , Integrina alfa3beta1/antagonistas & inibidores , Integrina alfa3beta1/genética , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Neutrófilos/patologia , Peptídeos/farmacologia , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/genética , Sepse/patologia , Receptores Toll-Like/genética
15.
Proc Natl Acad Sci U S A ; 111(17): 6371-6, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733886

RESUMO

Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4-expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies.


Assuntos
Movimento Celular , Optogenética , Receptores CXCR4/metabolismo , Linfócitos T/citologia , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos da radiação , Movimento Celular/efeitos da radiação , Polaridade Celular/imunologia , Polaridade Celular/efeitos da radiação , Imunoterapia , Luz , Camundongos , Dados de Sequência Molecular , Neoplasias/imunologia , Neoplasias/terapia , Engenharia de Proteínas , Receptores CXCR4/química , Transdução de Sinais/efeitos da radiação , Linfócitos T/imunologia
16.
Immune Netw ; 13(3): 102-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23885224

RESUMO

Emerging evidence suggests that gap formation and opening of the endothelial junctions during leukocyte extravasation is actively controlled to maintain the integrity of the vascular barrier. While the role for endothelial cells to this process has been well defined, it is not clear whether leukocytes are also actively contributing to endothelial barrier function. We have recently showed that extravasating leukocytes deposit microparticles on the subendothelium during the late stages of extravasation, which is LFA-1 dependent. Using multiphotonintravital microscopy (MP-IVM) of mouse cremaster muscle vessels in the current work, we show that microparticle formation and deposition maintains the integrity of the microvascular barrier during leukocyte extravasation. Inhibition of neutrophil-derived microparticle formation resulted in dramatically increased vascular leakage. These findings suggest that deposition of microparticles during neutrophil extravasation is essential for maintaining endothelial barrier function and may result in temporal difference between neutrophil extravasation and an increase in vascular leakage.

17.
Proc Natl Acad Sci U S A ; 109(26): 10474-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689994

RESUMO

T cells spend the majority of their time perusing lymphoid organs in search of cognate antigen presented by antigen presenting cells (APCs) and then quickly recirculate through the bloodstream to another lymph node. Therefore, regulation of a T-cell response is dependent upon the ability of cells to arrive in the correct location following chemokine gradients ("go" signal) as well as to receive appropriate T-cell receptor (TCR) activation signals upon cognate antigen recognition ("stop" signal). However, the mechanisms by which T cells regulate these go and stop signals remain unclear. We found that overexpression of the hematopoietic-specific RhoH protein in the presence of chemokine signals resulted in decreased Rap1-GTP and LFA-1 adhesiveness to ICAM-1, thus impairing T-cell chemotaxis; while in the presence of TCR signals, there were enhanced and sustained Rap1-GTP and LFA-1 activation as well as prolonged T:APC conjugates. RT-PCR analyses of activated CD4(+) T cells and live images of T-cell migration and immunological synapse (IS) formation revealed that functions of RhoH took place primarily at the levels of transcription and intracellular distribution. Thus, we conclude that RhoH expression provides a key molecular determinant that allows T cells to switch between sensing chemokine-mediated go signals and TCR-dependent stop signals.


Assuntos
Ativação Linfocitária , Linfócitos T/citologia , Fatores de Transcrição/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Humanos , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Quimiocinas/fisiologia
18.
Biosci Biotechnol Biochem ; 74(8): 1668-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699577

RESUMO

O-Linked N-acetylglucosamine (O-GlcNAc), a single GlcNAc modification of proteins, is abundant in nucleocytoplasmic proteins of eukaryotes. Most nuclear transcriptional regulator proteins carry O-GlcNAc, implicating O-GlcNAc in gene regulation. This study suggested the possibility that O-GlcNAc regulates cooperative binding of Sp1 and its collaborating transcription factors, Oct1 and Elf-1, onto DNA templates in vivo. Chromatin immunoprecipitation assays on cells in which O-GlcNAc was modulated pharmacologically revealed that Sp1-Oct1- and Sp1-Elf-1-paired occupancies of previously known target promoter regions were suppressed by elevated O-GlcNAc modification. Since these pairs of transcription factors bind the target promoters cooperatively and DNA binding of Sp1 alone is not affected by O-GlcNAc, our results imply that O-GlcNAc weakens the DNA binding of Sp1 and its cooperative binding partners by inhibiting stable interaction on DNA templates.


Assuntos
Acetilglucosamina/metabolismo , DNA/metabolismo , Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , RNA Nuclear Pequeno/genética , Ratos , Estreptozocina/farmacologia , Transcrição Gênica
19.
Biochem Biophys Res Commun ; 393(2): 314-8, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20138838

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc), a monosaccharide N-acetylglucosamine on the serine and threonine residues of nucleocytoplasmic proteins, is a novel protein modification that is ubiquitous among eukaryotes and implicated in cell regulation. Recent evidence indicates that O-GlcNAc regulates protein-protein interactions. Here we provide evidence that O-GlcNAc interrupts a known interaction between Sp1 and sterol regulatory element binding protein 2 (SREBP2), thereby inhibiting expression of the gene encoding acetyl-CoA synthetase 1, which is involved in lipid synthesis. This study suggests a novel mechanism in which lipid biosynthesis may be regulated by O-GlcNAc.


Assuntos
Acetilglucosamina/metabolismo , Coenzima A Ligases/genética , Regulação Enzimológica da Expressão Gênica , Lipídeos/biossíntese , Fator de Transcrição Sp1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Lipídeos/genética , Camundongos , Fator de Transcrição Sp1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transcrição Gênica
20.
Biochem Biophys Res Commun ; 380(3): 569-74, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19285002

RESUMO

The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.


Assuntos
Efrina-A2/antagonistas & inibidores , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Fator de Transcrição Sp1/antagonistas & inibidores , Fatores de Transcrição/genética , Acetilglucosamina , Animais , Linhagem Celular Tumoral , Efrina-A2/metabolismo , Humanos , Camundongos , Ratos , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...