Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 1956, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994583

RESUMO

The spread of antibiotic resistance amongst bacterial pathogens has led to an urgent need for new antimicrobial compounds with novel modes of action that minimize the potential for drug resistance. To date, the development of new antimicrobial drugs is still lagging far behind the rising demand, partly owing to the absence of an effective screening platform. Over the last decade, the nematode Caenorhabditis elegans has been incorporated as a whole animal screening platform for antimicrobials. This development is taking advantage of the vast knowledge on worm physiology and how it interacts with bacterial and fungal pathogens. In addition to allowing for in vivo selection of compounds with promising anti-microbial properties, the whole animal C. elegans screening system has also permitted the discovery of novel compounds targeting infection processes that only manifest during the course of pathogen infection of the host. Another advantage of using C. elegans in the search for new antimicrobials is that the worm itself is a source of potential antimicrobial effectors which constitute part of its immune defense response to thwart infections. This has led to the evaluation of effector molecules, particularly antimicrobial proteins and peptides (APPs), as candidates for further development as therapeutic agents. In this review, we provide an overview on use of the C. elegans model for identification of novel anti-infectives. We highlight some highly potential lead compounds obtained from C. elegans-based screens, particularly those that target bacterial virulence or host defense to eradicate infections, a mechanism distinct from the action of conventional antibiotics. We also review the prospect of using C. elegans APPs as an antimicrobial strategy to treat infections.

2.
Front Microbiol ; 7: 1436, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672387

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.

3.
Proc Natl Acad Sci U S A ; 110(37): 15067-72, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980181

RESUMO

Burkholderia pseudomallei is a Gram-negative soil bacterium that infects both humans and animals. Although cell culture studies have revealed significant insights into factors contributing to virulence and host defense, the interactions between this pathogen and its intact host remain to be elucidated. To gain insights into the host defense responses to B. pseudomallei infection within an intact host, we analyzed the genome-wide transcriptome of infected Caenorhabditis elegans and identified ∼6% of the nematode genes that were significantly altered over a 12-h course of infection. An unexpected feature of the transcriptional response to B. pseudomallei was a progressive increase in the proportion of down-regulated genes, of which ELT-2 transcriptional targets were significantly enriched. ELT-2 is an intestinal GATA transcription factor with a conserved role in immune responses. We demonstrate that B. pseudomallei down-regulation of ELT-2 targets is associated with degradation of ELT-2 protein by the host ubiquitin-proteasome system. Degradation of ELT-2 requires the B. pseudomallei type III secretion system. Together, our studies using an intact host provide evidence for pathogen-mediated host immune suppression through the destruction of a host transcription factor.


Assuntos
Burkholderia pseudomallei/patogenicidade , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Fatores de Transcrição GATA/metabolismo , Animais , Animais Geneticamente Modificados , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/imunologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação para Baixo , Fatores de Transcrição GATA/genética , Interações Hospedeiro-Patógeno/imunologia , Processamento Pós-Transcricional do RNA , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...