Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Transl Oncol ; 46: 101971, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797019

RESUMO

Cholangiocarcinoma (CCA) is a devastating malignancy characterized by aggressive tumor growth and limited treatment options. Dysregulation of the Hippo signaling pathway and its downstream effector, Yes-associated protein (YAP), has been implicated in CCA development and progression. In this study, we investigated the effects of Isoalantolactone (IALT) on CCA cells to elucidate its effect on YAP activity and its potential clinical significance. Our findings demonstrate that IALT exerts cytotoxic effects, induces apoptosis, and modulates YAP signaling in SNU478 cells. We further confirmed the involvement of the canonical Hippo pathway by generating LATS1/LATS2 knockout cells, highlighting the dependence of IALT-mediated apoptosis and YAP phosphorylation on the Hippo-LATS signaling axis. In addition, IALT suppressed cell growth and migration, partially dependent on YAP-TEAD activity. These results provide insights into the therapeutic potential of targeting YAP in CCA and provide a rationale for developing of YAP-targeted therapies for this challenging malignancy.

3.
Cell Rep ; 43(3): 113912, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446659

RESUMO

In this study, we explore the dynamic process of colorectal cancer progression, emphasizing the evolution toward a more metastatic phenotype. The term "evolution" as used in this study specifically denotes the phenotypic transition toward a higher metastatic potency from well-formed glandular structures to collective invasion, ultimately resulting in the development of cancer cell buddings at the invasive front. Our findings highlight the spatial correlation of this evolution with tumor cell senescence, revealing distinct types of senescent tumor cells (types I and II) that play different roles in the overall cancer progression. Type I senescent tumor cells (p16INK4A+/CXCL12+/LAMC2-/MMP7-) are identified in the collective invasion region, whereas type II senescent tumor cells (p16INK4A+/CXCL12+/LAMC2+/MMP7+), representing the final evolved form, are prominently located in the partial-EMT region. Importantly, type II senescent tumor cells associate with local invasion and lymph node metastasis in colorectal cancer, potentially affecting patient prognosis.


Assuntos
Neoplasias Colorretais , Metaloproteinase 7 da Matriz , Humanos , Metaloproteinase 7 da Matriz/genética , Senescência Celular/genética , Fenótipo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
4.
Clin Mol Hepatol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486508

RESUMO

Background/Aims: Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. Despite identification of several biomarkers for HCC diagnosis, challenges such as low sensitivity and intratumoral heterogeneity have impeded early detection, highlighting the need for etiology-specific blood biomarkers. Methods: We generated whole-transcriptome sequencing (WTS) and targeted proteome data from buffy coat and plasma samples from HCC patients. By integrating etiological information on viral infection, we investigated the etiology-specific gene expression landscape at the blood level. Validation of differentially expressed genes (DEGs) was performed using publicly available RNA-seq datasets and qRT‒PCR with AUC analyses. Results: Differential expression analyses with multiomics data revealed distinct gene expression profiles between HBV-associated HCC and nonviral HCC, indicating the presence of etiology-specific blood biomarkers. The identified DEGs were validated across multiple independent datasets, underscoring their utility as biomarkers. Additionally, single-cell RNA-seq analysis of HCC confirmed differences in DEG expression across distinct immune cell types. Conclusions: Our buffy coat WTS data and plasma proteome data may serve as reliable sources for identifying etiology-specific blood biomarkers of HCC and might contribute to discovery of therapeutic targets for HCC across different etiologies.

5.
Adv Sci (Weinh) ; 11(14): e2303177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308188

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is a metabolic enzyme with key roles in inflammation. Previous studies have examined the consequences of its upregulated expression in cancer cells themselves, but studies are limited with respect to its role in the other cells within the tumor microenvironment (TME) during colorectal cancer (CRC) progression. Using single-cell RNA sequencing (scRNA-seq) data, it is founded that NAMPT is highly expressed in SPP1+ tumor-associated macrophages (TAMs), a unique subset of TAMs associated with immunosuppressive activity. A NAMPThigh gene signature in SPP1+ TAMs correlated with worse prognostic outcomes in CRC patients. The effect of Nampt deletion in the myeloid compartment of mice during CRC development is explored. NAMPT deficiency in macrophages resulted in HIF-1α destabilization, leading to reduction in M2-like TAM polarization. NAMPT deficiency caused significant decreases in the efferocytosis activity of macrophages, which enhanced STING signaling and the induction of type I IFN-response genes. Expression of these genes contributed to anti-tumoral immunity via potentiation of cytotoxic T cell activity in the TME. Overall, these findings suggest that NAMPT-initiated TAM-specific genes can be useful in predicting poor CRC patient outcomes; strategies aimed at targeting NAMPT may provide a promising therapeutic approach for building an immunostimulatory TME in CRC progression.


Assuntos
Neoplasias Colorretais , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Macrófagos/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Transdução de Sinais , Microambiente Tumoral
6.
Cell Death Dis ; 15(1): 76, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245531

RESUMO

The Hippo pathway's main effector, Yes-associated protein (YAP), plays a crucial role in tumorigenesis as a transcriptional coactivator. YAP's phosphorylation by core upstream components of the Hippo pathway, such as mammalian Ste20 kinase 1/2 (MST1/2), mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), and their substrate, large tumor suppressor 1/2 (LATS1/2), influences YAP's subcellular localization, stability, and transcriptional activity. However, recent research suggests the existence of alternative pathways that phosphorylate YAP, independent of these core upstream Hippo pathway components, raising questions about additional means to inactivate YAP. In this study, we present evidence demonstrating that TSSK1B, a calcium/calmodulin-dependent protein kinase (CAMK) superfamily member, is a negative regulator of YAP, suppressing cellular proliferation and oncogenic transformation. Mechanistically, TSSK1B inhibits YAP through two distinct pathways. Firstly, the LKB1-TSSK1B axis directly phosphorylates YAP at Ser94, inhibiting the YAP-TEAD complex's formation and suppressing its target genes' expression. Secondly, the TSSK1B-LATS1/2 axis inhibits YAP via phosphorylation at Ser127. Our findings reveal the involvement of TSSK1B-mediated molecular mechanisms in the Hippo-YAP pathway, emphasizing the importance of multilevel regulation in critical cellular decision-making processes.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Animais , Humanos , Fosforilação , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transformação Celular Neoplásica/metabolismo , Proliferação de Células/fisiologia , Fosfoproteínas/metabolismo , Mamíferos
7.
Sci Data ; 10(1): 861, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049462

RESUMO

Despite the importance of hypothalamic neurocircuits in regulating homeostatic and survival-related behaviors, our understanding of the intrinsic molecular identities of neural components involved in these complex multi-synaptic interactions remains limited. In this study, we constructed a Cre recombinase-dependent pseudorabies virus (PRVs) capable of crossing synapses, coupled with transcriptome analysis of single upstream neurons post-infection. By utilizing this retrograde nuclear Connect-seq (nuConnect-seq) approach, we generated a single nuclei RNA-seq (snRNA-seq) dataset of 1,533 cells derived from the hypothalamus of CRH-IRES-Cre (CRH-Cre) mice. To ensure the technical validity of our nuConnect-seq dataset, we employed a label transfer technique against an integrated reference dataset of postnatal mouse hypothalamus comprising 152,524 QC-passed cells. The uniqueness of our approach lies in the integration of diverse datasets for validation, providing a more nuanced diversity of hypothalamic cell types. The presented validated dataset may deepen our understanding of hypothalamic neurocircuits and underscore the essential role of comprehensive integrated transcriptomic data for technical validity.


Assuntos
Herpesvirus Suídeo 1 , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Herpesvirus Suídeo 1/genética , Hipotálamo , Neurônios/metabolismo
9.
Aging (Albany NY) ; 15(24): 14591-14606, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38159247

RESUMO

Alternative splicing (AS) enables a pre-mRNA to generate different functional protein variants. The change in AS has been reported as an emerging contributor to cellular senescence and aging. However, it remains to be elucidated which senescent AS variants are generated in and regulate senescence. Here, we observed commonly down-regulated SRSF7 in senescent cells, using publicly available RNA-seq datasets of several in vitro senescence models. We further confirmed SRSF7 deregulation from our previous microarray datasets of time-series replicative senescence (RS) and oxidative stress-induced senescence (OSIS) of human diploid fibroblast (HDF). We validated the time-course changes of SRSF mRNA and protein levels, developing both RS and OSIS. SRSF knockdown in HDF was enough to induce senescence, accompanied by p53 protein stabilization and MDM2 variants formation. Interestingly, expression of MDM2 variants showed similar patterns of p53 expression in both RS and OSIS. Next, we identified MDM2-C as a key functional AS variant generated specifically by SRSF7 depletion. Finally, we validated that MDM2-C overexpression induced senescence of HDF. These results indicate that SRSF7 down-regulation plays a key role in p53-mediated senescence by regulating AS of MDM2, a key negative regulator of p53, implying its critical involvement in the entry into cell senescence.


Assuntos
Senescência Celular , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Humanos , Envelhecimento , Senescência Celular/genética , Regulação para Baixo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Nat Commun ; 14(1): 7619, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993434

RESUMO

The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Idoso , Senescência Celular/genética , Envelhecimento/genética , Células Epiteliais/fisiologia , Fibroblastos , Miócitos de Músculo Liso
12.
J Pharm Anal ; 13(8): 836-850, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37719197

RESUMO

Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information, with its application to neuroscience termed neuroinformatics. Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms, which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases. Importantly, integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile. In this review, we first summarize data mining studies utilizing datasets from the individual type of omics analysis, including epigenetics/epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and spatial omics, pertaining to Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We then discuss multi-omics integration approaches, including independent biological integration and unsupervised integration methods, for more intuitive and informative interpretation of the biological data obtained across different omics layers. We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks. Finally, we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery, therapeutic development, and elucidation of disease mechanisms. We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.

13.
Adv Sci (Weinh) ; 10(22): e2201663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218524

RESUMO

Cancer cells in secondary tumors are found to form metastases more efficiently as compared to their primary tumor counterparts. This is partially due to the unfavorable microenvironments encountered by metastasizing cancer cells that result in the survival of a more metastatic phenotype from the original population. However, the role of deleterious mechanical stresses in this change of metastatic potential is unclear. Here, by forcing cancer cells to flow through small capillary-sized constrictions, it is demonstrated that mechanical deformation can select a tumor cell subpopulation that exhibits resilience to mechanical squeezing-induced cell death. Transcriptomic profiling reveals up-regulated proliferation and DNA damage response pathways in this subpopulation, which are further translated into a more proliferative and chemotherapy-resistant phenotype. These results highlight a potential link between the microenvironmental physical stresses and the enhanced malignancy of metastasizing cancer cells which may be utilized as a therapeutic strategy in preventing the metastatic spread of cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fenótipo , Proliferação de Células , Microambiente Tumoral
14.
Sci Data ; 10(1): 167, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973297

RESUMO

As single-cell RNA sequencing (scRNA-seq) has emerged as a great tool for studying cellular heterogeneity within the past decade, the number of available scRNA-seq datasets also rapidly increased. However, reuse of such data is often problematic due to a small cohort size, limited cell types, and insufficient information on cell type classification. Here, we present a large integrated scRNA-seq dataset containing 224,611 cells from human primary non-small cell lung cancer (NSCLC) tumors. Using publicly available resources, we pre-processed and integrated seven independent scRNA-seq datasets using an anchor-based approach, with five datasets utilized as reference and the remaining two, as validation. We created two levels of annotation based on cell type-specific markers conserved across the datasets. To demonstrate usability of the integrated dataset, we created annotation predictions for the two validation datasets using our integrated reference. Additionally, we conducted a trajectory analysis on subsets of T cells and lung cancer cells. This integrated data may serve as a resource for studying NSCLC transcriptome at the single cell level.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Análise da Expressão Gênica de Célula Única , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , Análise de Sequência de RNA , Software , Transcriptoma
15.
Cancer Commun (Lond) ; 43(4): 455-479, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36919193

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play an important role in the induction of chemo-resistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to two tyrosine kinase inhibitors (TKIs), sorafenib and lenvatinib, and to identify a novel therapeutic target for overcoming TKI resistance in hepatocellular carcinoma (HCC). METHODS: We performed a systematic integrative analysis of publicly available gene expression datasets and whole-transcriptome sequencing data from 9 pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively, to identify key molecules that might induce resistance to TKIs. We then performed in vitro and in vivo experiments to validate selected targets and related mechanisms. The associations of plasma secreted phosphoprotein 1 (SPP1) expression levels before sorafenib/lenvatinib treatment with progression-free survival (PFS) and overall survival (OS) of 54 patients with advanced HCC were evaluated using Kaplan-Meier and Cox regression analysis. RESULTS: Bioinformatic analysis identified CAF-derived SPP1 as a candidate molecule driving TKI resistance. SPP1 inhibitors reversed CAF-induced TKI resistance in vitro and in vivo. CAF-derived SPP1 activated rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) through the integrin-protein kinase C-alpha (PKCα) signaling pathway and promoted epithelial-to-mesenchymal transition (EMT). A high plasma SPP1 level before TKI treatment was identified as an independent predictor of poor PFS (P = 0.026) and OS (P = 0.047) in patients with advanced HCC after TKI treatment. CONCLUSIONS: CAF-derived SPP1 enhances TKI resistance in HCC via bypass activation of oncogenic signals and EMT promotion. Its inhibition represents a promising therapeutic strategy against TKI resistance in HCC. Moreover, plasma SPP1 level before TKI treatment represents a potential biomarker for treatment response prediction.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fosfatidilinositol 3-Quinases , Osteopontina/uso terapêutico , Neoplasias Hepáticas/patologia
16.
Heliyon ; 9(2): e13170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785830

RESUMO

Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated ß-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.

17.
Front Oncol ; 12: 939460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176417

RESUMO

Existing marker-based methods of minimal residual disease (MRD) determination in neuroblastoma do not effectively enrich for the circulating disease cell population. Given the relative size differential of neuroblastoma tumor cells over normal hematogenous cells, we hypothesized that cell size-based separation could enrich circulating tumor cells (CTCs) from blood samples and disseminated tumor cells (DTCs) from bone marrow aspirates (BMA) of neuroblastoma patients, and that their gene expression profiles could vary dynamically with various disease states over the course of treatment. Using a spiral microfluidic chip, peripheral blood of 17 neuroblastoma patients at 3 serial treatment timepoints (diagnosis, n=17; post-chemotherapy, n=11; and relapse, n=3), and bone marrow samples at diagnosis were enriched for large intact circulating cells. Profiling the resulting enriched samples with immunohistochemistry and mRNA expression of 1490 cancer-related genes via NanoString, 13 of 17 samples contained CTCs displaying cytologic atypia, TH and PHOX2B expression and/or upregulation of cancer-associated genes. Gene signatures reflecting pro-metastatic processes and the neuroblastoma mesenchymal super-enhancer state were consistently upregulated in 7 of 13 samples, 6 of which also had metastatic high-risk disease. Expression of 8 genes associated with PI3K and GCPR signaling were significantly upregulated in CTCs of patients with bone marrow metastases versus patients without. Correspondingly, in patients with marrow metastases, differentially-expressed gene signatures reflected upregulation of immune regulation in bone marrow DTCs versus paired CTCs samples. In patients who later developed disease relapse, 5 genes involved in immune cell regulation, JAK/STAT signaling and the neuroblastoma mesenchymal super-enhancer state (OLFML2B, STAT1, ARHGDIB, STAB1, TLR2) were upregulated in serial CTC samples over their disease course, despite urinary catecholamines and bone marrow aspirates not indicating the disease recurrences. In summary, using a label-free cell size-based separation method, we enriched and characterized intact circulating cells in peripheral blood indicative of neuroblastoma CTCs, as well as their DTC counterparts in the bone marrow. Expression profiles of pro-metastatic genes in CTCs correlated with the presence of bone marrow metastases at diagnosis, while longitudinal profiling identified persistently elevated expression of genes in CTCs that may serve as novel predictive markers of hematogenous MRD in neuroblastoma patients that subsequently relapse.

18.
Mol Cells ; 45(9): 610-619, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35983702

RESUMO

Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.


Assuntos
Senescência Celular , Neoplasias , Biomarcadores , Senescência Celular/genética , Humanos , Neoplasias/genética , Análise de Célula Única , Microambiente Tumoral/genética
19.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805162

RESUMO

While mitochondrial bioenergetic deregulation has long been implicated in cellular senescence, its mechanistic involvement remains unclear. By leveraging diverse mitochondria-related gene expression profiles derived from two different cellular senescence models of human diploid fibroblasts, we found that the expression of mitoribosomal proteins (MRPs) was generally decreased during the early-to-middle transition prior to the exhibition of noticeable SA-ß-gal activity. Suppressed expression patterns of the identified senescence-associated MRP signatures (SA-MRPs) were validated in aged human cells and rat and mouse skin tissues and in aging mouse fibroblasts at single-cell resolution. TIN2- and POT1-interaction protein (TPP1) was concurrently suppressed, which induced senescence, accompanied by telomere DNA damage. Lastly, we show that SA-MRP deregulation could be a potential upstream regulator of TPP1 suppression. Our results indicate that mitoribosomal deregulation could represent an early event initiating mitochondrial dysfunction and serve as a primary driver of cellular senescence and an upstream regulator of shelterin-mediated telomere deprotection.


Assuntos
Senescência Celular , Mitocôndrias , Ribossomos , Complexo Shelterina , Proteínas de Ligação a Telômeros , Animais , Senescência Celular/fisiologia , Camundongos , Mitocôndrias/metabolismo , Ratos , Ribossomos/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
20.
J Proteomics ; 261: 104582, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427800

RESUMO

Phosphorylation is an essential regulatory mechanism in cells that modifies diverse substrates, such as proteins, carbohydrates, lipids, and nucleotides. Protein phosphorylation regulates function, subcellular localization, and protein-protein interactions. Protein kinases and phosphatases catalyze this reversible mechanism, subsequently influencing signal transduction. The dysregulation of protein phosphorylation leads to many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Therefore, analyzing the phosphorylation status and identifying protein phosphorylation sites are critical for elucidating the biological functions of specific phosphorylation events. Unraveling the critical phosphorylation events associated with diseases and specific signaling pathways is promising for drug discovery. To date, highly accurate and sensitive approaches have been developed to detect the phosphorylation status of proteins. In this review, we discuss the application of Phos-tag to elucidate the biological functions of Hippo pathway components, with emphasis on the identification and quantitation of protein phosphorylation under physiological and pathological conditions. SIGNIFICANCE: We here provide a comprehensive overview of Phos-tag technique-based strategies to identify phosphorylated proteins at the cellular level in the Hippo-YAP pathway that comprises a major driving force for cellular homeostasis. We clarify the links of applying Phos-tag in elucidating the biological functions of the Hippo pathway components with particular attention to the identification and quantitation of protein phosphorylation under physiological and pathological conditions. We believe that our paper will make a significant contribution to the literature because these detailed phosphorylation modifications and functional diversity of the Hippo pathway components in physiological and pathological processes are only beginning to come to the fore, highlighting the potential for discovering new therapeutic targets. Moreover, this line of research can provide further insight into the inextricable link between phos-tag applications as a molecular tool and cellular signaling modality, offering new directions for an integrated research program toward understanding cellular regulation at the molecular level. Given the broad research and practical applications, we believe that this paper will be of interest to the readership of your journal.


Assuntos
Proteínas Quinases , Piridinas , Fosfoproteínas/análise , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...