Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(12): e0243079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301487

RESUMO

Tree growth and survival differ strongly between canopy trees (those directly exposed to overhead light), and understory trees. However, the structural complexity of many tropical forests makes it difficult to determine canopy positions. The integration of remote sensing and ground-based data enables this determination and measurements of how canopy and understory trees differ in structure and dynamics. Here we analyzed 2 cm resolution RGB imagery collected by a Remotely Piloted Aircraft System (RPAS), also known as drone, together with two decades of bi-annual tree censuses for 2 ha of old growth forest in the Central Amazon. We delineated all crowns visible in the imagery and linked each crown to a tagged stem through field work. Canopy trees constituted 40% of the 1244 inventoried trees with diameter at breast height (DBH) > 10 cm, and accounted for ~70% of aboveground carbon stocks and wood productivity. The probability of being in the canopy increased logistically with tree diameter, passing through 50% at 23.5 cm DBH. Diameter growth was on average twice as large in canopy trees as in understory trees. Growth rates were unrelated to diameter in canopy trees and positively related to diameter in understory trees, consistent with the idea that light availability increases with diameter in the understory but not the canopy. The whole stand size distribution was best fit by a Weibull distribution, whereas the separate size distributions of understory trees or canopy trees > 25 cm DBH were equally well fit by exponential and Weibull distributions, consistent with mechanistic forest models. The identification and field mapping of crowns seen in a high resolution orthomosaic revealed new patterns in the structure and dynamics of trees of canopy vs. understory at this site, demonstrating the value of traditional tree censuses with drone remote sensing.


Assuntos
Conservação dos Recursos Naturais/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Árvores/crescimento & desenvolvimento , Florestas , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Clima Tropical
2.
New Phytol ; 223(3): 1253-1266, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077396

RESUMO

Reducing uncertainties in the response of tropical forests to global change requires understanding how intra- and interannual climatic variability selects for different species, community functional composition and ecosystem functioning, so that the response to climatic events of differing frequency and severity can be predicted. Here we present an extensive dataset of hydraulic traits of dominant species in two tropical Amazon forests with contrasting precipitation regimes - low seasonality forest (LSF) and high seasonality forest (HSF) - and relate them to community and ecosystem response to the El Niño-Southern Oscillation (ENSO) of 2015. Hydraulic traits indicated higher drought tolerance in the HSF than in the LSF. Despite more intense drought and lower plant water potentials in HSF during the 2015-ENSO, greater xylem embolism resistance maintained similar hydraulic safety margin as in LSF. This likely explains how ecosystem-scale whole-forest canopy conductance at HSF maintained a similar response to atmospheric drought as at LSF, despite their water transport systems operating at different water potentials. Our results indicate that contrasting precipitation regimes (at seasonal and interannual time scales) select for assemblies of hydraulic traits and taxa at the community level, which may have a significant role in modulating forest drought response at ecosystem scales.


Assuntos
Secas , El Niño Oscilação Sul , Florestas , Água , Folhas de Planta/fisiologia , Probabilidade , Chuva , Estações do Ano , Especificidade da Espécie
3.
Glob Chang Biol ; 24(12): 5867-5881, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30256494

RESUMO

Amazon forests account for ~25% of global land biomass and tropical tree species. In these forests, windthrows (i.e., snapped and uprooted trees) are a major natural disturbance, but the rates and mechanisms of recovery are not known. To provide a predictive framework for understanding the effects of windthrows on forest structure and functional composition (DBH ≥10 cm), we quantified biomass recovery as a function of windthrow severity (i.e., fraction of windthrow tree mortality on Landsat pixels, ranging from 0%-70%) and time since disturbance for terra-firme forests in the Central Amazon. Forest monitoring allowed insights into the processes and mechanisms driving the net biomass change (i.e., increment minus loss) and shifts in functional composition. Windthrown areas recovering for between 4-27 years had biomass stocks as low as 65.2-91.7 Mg/ha or 23%-38% of those in nearby undisturbed forests (~255.6 Mg/ha, all sites). Even low windthrow severities (4%-20% tree mortality) caused decadal changes in biomass stocks and structure. While rates of biomass increment in recovering vegetation were nearly double (6.3 ± 1.4 Mg ha-1  year-1 ) those of undisturbed forests (~3.7 Mg ha-1  year-1 ), biomass loss due to post-windthrow mortality was high (up to -7.5 ± 8.7 Mg ha-1  year-1 , 8.5 years since disturbance) and unpredictable. Consequently, recovery to 90% of "pre-disturbance" biomass takes up to 40 years. Resprouting trees contributed little to biomass recovery. Instead, light-demanding, low-density genera (e.g., Cecropia, Inga, Miconia, Pourouma, Tachigali, and Tapirira) were favored, resulting in substantial post-windthrow species turnover. Shifts in functional composition demonstrate that windthrows affect the resilience of live tree biomass by favoring soft-wooded species with shorter life spans that are more vulnerable to future disturbances. As the time required for forests to recover biomass is likely similar to the recurrence interval of windthrows triggering succession, windthrows have the potential to control landscape biomass/carbon dynamics and functional composition in Amazon forests.


Assuntos
Biomassa , Florestas , Árvores , Vento , Brasil , Carbono , Clima Tropical
4.
Oecologia ; 160(1): 107-17, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19194726

RESUMO

Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm(-3)) was significantly lower than in primary forest plots (0.71 g cm(-3)), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.


Assuntos
Adaptação Biológica/fisiologia , Biodiversidade , Ecossistema , Árvores/crescimento & desenvolvimento , Brasil , Especificidade da Espécie , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...