RESUMO
We evaluated the hypothesis of an association between excess mortality and political partisanship in Brazil using municipal death certificates registered in the Brazilian Ministry of Health database and first-round electoral results of Presidential elections in 2018 and 2022. Considering the former Brazilian President's stance of discrediting and neglecting the severity of the pandemic, we expect a possible relationship between excessive mortality rates during the COVID-19 health crisis and the number of municipal votes for Bolsonaro. Our results showed that, in both elections, the first-round percentage of municipal votes for Bolsonaro was positively associated with the peaks of excess deaths across Brazilian municipalities in 2020 and 2021. Despite the excess mortality during the pandemic, the political loyalty to Bolsonaro remained the same during the electoral period of 2022. A possible explanation for this is linked to the Brazilian political scenario, which presents an environment of tribal politics and affective polarization.
Assuntos
COVID-19 , Pandemias , Política , COVID-19/mortalidade , Humanos , Brasil/epidemiologia , Mortalidade/tendências , Cidades/epidemiologia , SARS-CoV-2RESUMO
Abstract: We evaluated the hypothesis of an association between excess mortality and political partisanship in Brazil using municipal death certificates registered in the Brazilian Ministry of Health database and first-round electoral results of Presidential elections in 2018 and 2022. Considering the former Brazilian President's stance of discrediting and neglecting the severity of the pandemic, we expect a possible relationship between excessive mortality rates during the COVID-19 health crisis and the number of municipal votes for Bolsonaro. Our results showed that, in both elections, the first-round percentage of municipal votes for Bolsonaro was positively associated with the peaks of excess deaths across Brazilian municipalities in 2020 and 2021. Despite the excess mortality during the pandemic, the political loyalty to Bolsonaro remained the same during the electoral period of 2022. A possible explanation for this is linked to the Brazilian political scenario, which presents an environment of tribal politics and affective polarization.
Resumo: Usando dados municipais em declarações de óbito registrados no Ministério da Saúde e resultados eleitorais do primeiro turno das eleições presidenciais de 2018 e 2022, avaliamos a hipótese de que há associação entre excesso de mortalidade e partidarismo político no Brasil. Dada a postura do ex-presidente brasileiro de desacreditar e negligenciar a gravidade da pandemia, esperamos que haja possivelmente uma relação entre as taxas excessivas de mortalidade durante a crise sanitária da COVID-19 e o número de votos municipais para Bolsonaro. Nossos resultados mostraram que, em ambas as eleições, o percentual de votos municipais no primeiro turno para Bolsonaro foi positivamente associado aos picos de excesso de mortes nos municípios brasileiros em 2020 e 2021. Mesmo com o excesso de mortalidade durante a pandemia, a lealdade política de Bolsonaro não diminuiu durante o segundo período eleitoral em 2022. Uma possível explicação para isso está ligada ao cenário político brasileiro, que vive um ambiente de política tribal e polarização afetiva.
Resumen: A partir de datos municipales sobre certificados de defunción registrados en el Ministerio de Salud de Brasil y de los resultados electorales de la primera vuelta de las elecciones presidenciales de 2018 y 2022, se evaluó si existe una asociación entre el exceso de mortalidad y el partidismo político en Brasil. Ante la postura del ex presidente brasileño de desacreditar y desatender la gravedad de la pandemia, probablemente exista una relación entre las altas tasas de mortalidad durante la crisis de salud del COVID-19 y el número de votos municipales para Bolsonaro. Los resultados demostraron que, en ambas elecciones, el porcentaje de votos municipales en la primera vuelta para Bolsonaro estuvo asociado positivamente con los picos de alta de muertes en los municipios brasileños para el período 2020-2021. Incluso con la alta mortalidad durante la pandemia, la lealtad política de Bolsonaro no disminuyó durante el segundo período electoral en 2022. Una de las posibles explicaciones es que esto se vincula al escenario político brasileño, que vive una política tribal y polarización afectiva.
RESUMO
The SARS-CoV-2 (COVID-19) pandemic impacted the health systems between and within countries, and in the course of the pandemic sexual and reproductive health services were the most disrupted. Findings from high-income settings have reported significant changes in preterm birth prevalence during the pandemic period. To understand the possible effects of the COVID-19 pandemic on preterm birth numbers at the Brazilian national level. We compare the number of preterm deliveries during the COVID-19 pandemic period (2020 and 2021) with previous years. We conducted a population-based cross-sectional study taking the period from January 2017 to December 2021 to account. We use individual-level live births data from the Brazilian Live Birth Information System (SINASC), and we estimate the odds ratio (OR) of preterm deliveries using propensity score weighting analysis in Brazil and its regions. During the study period (from 2017 to 2021), about 2.7 million live births were recorded per year, and the missing value for gestational age at delivery was less than 1.5%. The preterm birth prevalence slightly increased during the COVID-19 pandemic compared to the pre-pandemic period (11.32% in 2021 vs 11.09% in 2019, p-value < 0.0001). After adjusting for sociodemographic variables, the OR of preterm births in Brazil has significantly increased, 4% in 2020 (OR: 1.04 [1.03-1.05] 95% CI, p-value < 0.001), and 2% in 2021(OR: 1.02 [1.01-1.03] 95% CI, p-value < 0.001), compared to 2019. At the regional level, the preterm birth pattern in the South, Southeast and Northeast regions show a similar pattern. The highest odds ratio was observed in the South region (2020 vs 2019, OR: 1.07 [1.05-1.10] 95% CI; 2021 vs 2019, OR: 1.03 [1.01-1.06] 95% CI). However, we also observed a significant reduction in the ORs of preterm births in the northern region during the COVID-19 pandemic (2020 vs 2019, OR: 0.96 [0.94-0.98] 95% CI) and (2021 vs 2019, OR: 0.97 [0.95-0.99] 95% CI). Our analysis shows that the pandemic has increased regional variation in the number of preterm births in Brazil in 2020 and 2021 compared to the pre-pandemic years.
Assuntos
COVID-19 , Nascimento Prematuro , Recém-Nascido , Humanos , Feminino , Gravidez , COVID-19/epidemiologia , SARS-CoV-2 , Brasil/epidemiologia , Pandemias , Nascimento Prematuro/epidemiologia , Estudos Transversais , PrevalênciaRESUMO
Using five cause-specific mortality data sourced by the Brazilian Ministry of Health, and over 17 years period, we applied Bayesian spatio-temporal models on 644 municipalities of the state of São Paulo, using logistic model to the binary outcome that specifies whether or not the death was from a specific cause. We modeled the temporal mortality effects using B-splines, while the spatial components were considered through Gaussian and Markov random field, and inference was based on Markov chain Monte Carlo simulation. The results demonstrate consistent downward trend in mortality from infectious and parasitic diseases and external causes, while those from neoplasms and respiratory are rising. Cardiovascular is the only cause-specific death that is kept constant in time. All the causes of death considered show heterogeneous spatial and temporal variations among the municipalities, which sometimes change considerably within successive years. Mortality from infectious diseases clustered around the Northwestern municipalities in 2000, but changes to the Southeastern part in 2016, a similar development as external death causes. The study identifies areas with increased and decreased odds mortality and could be useful in disease monitoring, especially if we consider small spatial units.
Assuntos
Causas de Morte , Teorema de Bayes , Brasil/epidemiologia , Cidades , Humanos , Análise Espaço-TemporalRESUMO
Abstract Using five cause-specific mortality data sourced by the Brazilian Ministry of Health, and over 17 years period, we applied Bayesian spatio-temporal models on 644 municipalities of the state of São Paulo, using logistic model to the binary outcome that specifies whether or not the death was from a specific cause. We modeled the temporal mortality effects using B-splines, while the spatial components were considered through Gaussian and Markov random field, and inference was based on Markov chain Monte Carlo simulation. The results demonstrate consistent downward trend in mortality from infectious and parasitic diseases and external causes, while those from neoplasms and respiratory are rising. Cardiovascular is the only cause-specific death that is kept constant in time. All the causes of death considered show heterogeneous spatial and temporal variations among the municipalities, which sometimes change considerably within successive years. Mortality from infectious diseases clustered around the Northwestern municipalities in 2000, but changes to the Southeastern part in 2016, a similar development as external death causes. The study identifies areas with increased and decreased odds mortality and could be useful in disease monitoring, especially if we consider small spatial units.
Resumo Usando dados do Ministério da Saúde do Brasil para cinco causa de mortes, e num período de 17 anos, aplicamos modelos espaço-temporais Bayesianos em 644 municípios do estado de São Paulo, utilizando um modelo logístico binário que especifica se o óbito foi (ou não) de uma determinada causa. Modelamos os efeitos temporais da mortalidade com B-splines, e os componentes espaciais foram estimados através de campos aleatórios de Gaussiano e Markov. Simulamos a inferência estatística com Monte Carlo via cadeias de Markov. Os resultados demonstraram tendência consistente de queda nas mortes por doenças infecciosas e causas externas, enquanto mortes por neoplasias e doenças respiratórias aumentaram no tempo. Cardiovascular foi a única causa de morte constante no tempo. As causas de morte apresentaram variações espaciais e temporais entre os municípios, com consideráveis mudanças em anos sucessivos. A mortalidade por doenças infecciosas se concentrou nos municípios do noroeste do estado em 2000, mas mudou para a parte sudeste em 2016, um desenvolvimento semelhante as causas externas de morte. Este estudo identificou áreas com maior e menor chances de morte entre diferentes causas, e pode ser útil no monitoramento de doenças, especialmente se considerarmos pequenas unidades espaciais.
Assuntos
Humanos , Causas de Morte , Brasil/epidemiologia , Teorema de Bayes , Cidades , Análise Espaço-TemporalRESUMO
As of mid-August 2020, Brazil was the country with the second-highest number of cases and deaths by the COVID-19 pandemic, but with large regional and social differences. In this study, using data from the Brazilian Ministry of Health, we analyze the spatial patterns of infection and mortality from Covid-19 across small areas of Brazil. We apply spatial autoregressive Bayesian models and estimate the risks of infection and mortality, taking into account age, sex composition of the population and other variables that describe the health situation of the spatial units. We also perform a decomposition analysis to study how age composition impacts the differences in mortality and infection rates across regions. Our results indicate that death and infections are spatially distributed, forming clusters and hotspots, especially in the Northern Amazon, Northeast coast and Southeast of the country. The high mortality risk in the Southeast part of the country, where the major cities are located, can be explained by the high proportion of the elderly in the population. In the less developed areas of the North and Northeast, there are high rates of infection among young adults, people of lower socioeconomic status, and people without access to health care, resulting in more deaths.
Assuntos
COVID-19/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Brasil/epidemiologia , COVID-19/mortalidade , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Fatores Sexuais , Fatores Socioeconômicos , Adulto JovemAssuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Humanos , SARS-CoV-2RESUMO
OBJECTIVE:: Assess the completeness of the DataSUS SIM death-count registry, by sex and Brazilian state, and estimate the probability of adult mortality (45q15), by sex and state, from 1980 to 2010. METHODS:: The study was based on mortality data obtained in the DataSUS Mortality Information System, from 1980 to 2010, and on population data from the 1980, 1991, 2000, and 2010 demographic censuses. The quality assessment of the registry data was conducted using traditional demographic and death distribution methods, and death probabilities were calculated using life-table concepts. RESULTS:: The results show a considerable improvement in the completeness of the death-count coverage in Brazil since 1980. In the southeast and south, we observed the complete coverage of the adult mortality registry, which did not occur in the previous decade. In the northeast and north, there were still places with a low coverage from 2000 to 2010, although there was a clear improvement in the quality of data. For all Brazilian states, there was a decline in the probability of adult mortality; we observed, however, that the death probability for males is much higher than that for females throughout the whole analysis period. CONCLUSION:: The observed improvements seem to be related to investments in the public health care system and administrative procedures to improve the recording of vital events.
Assuntos
Confiabilidade dos Dados , Atestado de Óbito , Mortalidade , Sistema de Registros/estatística & dados numéricos , Adolescente , Adulto , Brasil/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Fatores de Tempo , Adulto JovemRESUMO
RESUMO: Objetivo: Avaliar a qualidade do registro de óbitos do Datasus, por sexo e estados brasileiros, e estimar as probabilidades de morte adulta, 45q15, por sexo e estados, entre 1980 e 2010. Métodos: O estudo foi baseado em dados de mortalidade obtidos no Sistema de Informação de Mortalidade do Datasus, de 1980 a 2010, e em dados de população dos censos demográficos de 1980, 1991, 2000 e 2010. A avaliação da qualidade dos dados de registro foi feita utilizando-se métodos demográficos tradicionais e métodos de distribuição de mortes, e as probabilidades de morte foram calculadas a partir dos conceitos de tabelas de vida. Resultados: Os resultados indicam uma melhoria considerável do grau de cobertura de óbitos no Brasil desde 1980. Nas regiões Sudeste e Sul, observamos uma completa cobertura do registro de mortalidade adulta, o que não ocorria no decênio anterior. Por outro lado, no Nordeste e no Norte ainda existem localidades com baixo grau de cobertura entre 2000 e 2010. Em todos os estados do Brasil, observa-se um declínio da probabilidade de morte dos adultos. Observamos que as probabilidades de morte dos homens são muito mais elevadas do que as das mulheres. Conclusão: As melhorias observadas parecem estar relacionadas aos investimentos no sistema público de saúde e aos procedimentos administrativos para melhorar o registro dos eventos vitais.
ABSTRACT: Objective: Assess the completeness of the DataSUS SIM death-count registry, by sex and Brazilian state, and estimate the probability of adult mortality (45q15), by sex and state, from 1980 to 2010. Methods: The study was based on mortality data obtained in the DataSUS Mortality Information System, from 1980 to 2010, and on population data from the 1980, 1991, 2000, and 2010 demographic censuses. The quality assessment of the registry data was conducted using traditional demographic and death distribution methods, and death probabilities were calculated using life-table concepts. Results: The results show a considerable improvement in the completeness of the death-count coverage in Brazil since 1980. In the southeast and south, we observed the complete coverage of the adult mortality registry, which did not occur in the previous decade. In the northeast and north, there were still places with a low coverage from 2000 to 2010, although there was a clear improvement in the quality of data. For all Brazilian states, there was a decline in the probability of adult mortality; we observed, however, that the death probability for males is much higher than that for females throughout the whole analysis period. Conclusion: The observed improvements seem to be related to investments in the public health care system and administrative procedures to improve the recording of vital events.
Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Adulto Jovem , Sistema de Registros/estatística & dados numéricos , Mortalidade/tendências , Confiabilidade dos Dados , Fatores de Tempo , Brasil/epidemiologia , Atestado de Óbito , Pessoa de Meia-IdadeRESUMO
O artigo tem como objetivo principal apresentar uma metodologia simples para estimar o grau de cobertura dos registros de óbitos e obter estimativas de mortalidade para pequenas áreas, usando Minas Gerais como exemplo. A metodologia proposta combina a padronização indireta da estrutura de mortalidade de áreas menores com base nas funções de mortalidade de áreas maiores, e depois a aplicação dos métodos de distribuição de mortes para obter estimativas mais robustas de mortalidade para áreas menores. Os resultados obtidos são robustos e adequados quando comparados com estimativas oficiais e usando outros métodos. As estimativas em dois estágios foram tão robustas que elas reduziram o sobre-registro de óbitos em alguns casos e melhorou as estimativas de mortalidade adulta em algumas áreas onde os dados são menos confiáveis.
This article aims to present a simple methodology to estimate the coverage of registration of deaths and obtain estimates of mortality for small areas, using the example of Minas Gerais. The proposed methodology combines the structure of indirect standardization of mortality of smaller areas based on the functions of mortality of larger areas and then applying the methods of distribution of deaths for more robust estimates of mortality for smaller areas. The results are robust and suitable compared to government estimates, and using other methods. The estimates produced using the two stages procedure, were robust and reduced cases of over- registration of deaths counts and improved estimates of adult mortality in some areas where data are less reliable.
RESUMO
This paper examines the spatial pattern of ill-defined causes of death across Brazilian regions, and its relationship with the evolution of completeness of the deaths registry and changes in the mortality age profile. We make use of the Brazilian Health Informatics Department mortality database and population censuses from 1980 to 2010. We applied demographic methods to evaluate the quality of mortality data for 137 small areas and correct for under-registration of death counts when necessary. The second part of the analysis uses linear regression models to investigate the relationship between, on the one hand, changes in death counts coverage and age profile of mortality, and on the other, changes in the reporting of ill-defined causes of death. The completeness of death counts coverage increases from about 80% in 1980-1991 to over 95% in 2000-2010 at the same time the percentage of ill-defined causes of deaths reduced about 53% in the country. The analysis suggests that the government's efforts to improve data quality are proving successful, and they will allow for a better understanding of the dynamics of health and the mortality transition.
Assuntos
Causas de Morte/tendências , Sistema de Registros , Brasil/epidemiologia , Feminino , Humanos , Sistemas de Informação , Masculino , Análise de RegressãoRESUMO
This paper examines the spatial pattern of ill-defined causes of death across Brazilian regions, and its relationship with the evolution of completeness of the deaths registry and changes in the mortality age profile. We make use of the Brazilian Health Informatics Department mortality database and population censuses from 1980 to 2010. We applied demographic methods to evaluate the quality of mortality data for 137 small areas and correct for under-registration of death counts when necessary. The second part of the analysis uses linear regression models to investigate the relationship between, on the one hand, changes in death counts coverage and age profile of mortality, and on the other, changes in the reporting of ill-defined causes of death. The completeness of death counts coverage increases from about 80% in 1980-1991 to over 95% in 2000-2010 at the same time the percentage of ill-defined causes of deaths reduced about 53% in the country. The analysis suggests that the government’s efforts to improve data quality are proving successful, and they will allow for a better understanding of the dynamics of health and the mortality transition.
Este artigo analisa o padrão espacial das causas mal definidas de morte no Brasil e sua relação com a evolução do registro de óbitos e as mudanças no perfil etário da mortalidade. Usamos o banco de dados de mortalidade disponível no Departamento de Informática do SUS e os censos demográficos de 1980 a 2010, e aplicamos métodos demográficos para avaliar a qualidade dos dados de mortalidade por 137 pequenas áreas e corrigir o sub-registro de óbitos. A segunda parte da análise utiliza modelos de regressão linear para investigar a relação entre as mudanças na cobertura do registro de óbitos e o perfil etário da mortalidade em relação às mudanças no registro de causas mal definidas. Os resultados mostram que a cobertura do registro de óbito no Brasil saltou de 80% em 1980-1991 para mais de 95% em 2000-2010. Ao mesmo tempo, o porcentual de causas mal definidas de mortes reduziu cerca de 53% no país. A análise sugere que os esforços do governo para melhorar a qualidade de dados no Brasil são bem sucedidos, e que irá permitir uma melhor compreensão da dinâmica da saúde e da transição da mortalidade no país.
Este artículo examina el patrón espacial de causas mal definidas de muerte en todas las regiones brasileñas, y su relación con la evolución de la totalidad de muertes por registro, además de con los cambios producidos en el perfil de edad de mortalidad. Usamos la base de datos de mortalidad DATASUS y censos de población de 1980 a 2010. Se aplicaron métodos demográficos para evaluar la calidad de los datos de mortalidad en 137 áreas pequeñas y se realizaron revisiones para el recuento de las muertes por subregistro. En la segunda parte del análisis se emplean modelos de regresión lineal para investigar la relación entre los cambios en la cobertura de registro de muerte y el perfil de edad de mortalidad, respecto a los cambios en la presentación de causas mal definidas de la muerte. Los datos resultantes informan de un aumento en la cobertura del 80% al 95% y una reducción de un 53% en las causas mal definidas de 1980 a 2010. El análisis sugiere que los esfuerzos del gobierno para mejorar la calidad de los datos son exitosos, y permitirán una mejor comprensión de la dinámica de la salud y la transición de mortalidad.
Assuntos
Feminino , Humanos , Masculino , Causas de Morte/tendências , Sistema de Registros , Brasil/epidemiologia , Sistemas de Informação , Análise de RegressãoRESUMO
Este trabalho propõe uma metodologia de classificação dos municípios brasileiros conforme a característica migratória, tendo como base as informações disponíveis no Censo Demográfico de 2000. Foram aplicadas análises multivariadas de redução e classificação de dados sobre um conjunto de variáveis selecionadas que descrevem a forma como os 5.507 municípios se articulam na rede migratória brasileira. Primeiramente, aplicou-se uma análise de componentes principais com a finalidade de reduzir o conjunto de variáveis originais em componentes não correlacionados entre si. Posteriormente, estes componentes foram empregados numa análise classificatória de cluster com o objetivo de estabelecer uma tipologia migratória das localidades em estudo. Os resultados mostraram que há importantes diferenciais na inserção dos municípios na rede migratória, na qual existe um grande número de lugares pouco conectados em contraste com um número pequeno de pontos que experimentam fortes conexões, e nos quais a população circula rapidamente. A classificação aponta para a existência de novas categorias de lugares, além das definições clássicas de atração e repulsão, como a rotatividade migratória.
The authors propose a method for classifying the 5507 municipalities in Brazil according to their characteristics of migration phenomena, as shown in the data now available from the 2000 National Brazilian Census. Multivariate classifications for data reduction and classification analysis were carried out on a set of selected variables that describe how the municipalities in the country are articulated with the overall Brazilian migration network. First a central component analysis was applied in order to reduce the set of original variables into a new set of uncorrelated components. Next these components were used in a classificatory cluster analysis with the purpose of establishing a migration typology for the locations being studied. The results showed that there are great differences among municipalities in their participation in the migration network. There are many municipalities with weak ties with the migration network and a few areas with strong ties, where the populations are very mobile. We have called these municipalities "rotative locations." This classification indicates the existence of new categories of territory beyond the classical definitions of attraction and repulsion, one example being these rotative areas.
Este trabajo propone una metodología de clasificación de los municipios brasileños según la característica migratoria, utilizando como base las informaciones disponibles en el Censo Demográfico de 2000. Se aplicaron análisis multivariantes de reducción y clasificación de datos sobre un conjunto de variables seleccionadas que describen la forma en la que los 5.507 municipios se articulan en la red migratoria brasileña. En primer lugar se aplicó un análisis de componentes principales con la finalidad de reducir el conjunto de variables originales en componentes no correlacionados entre sí. Posteriormente, estos componentes fueron utilizados en un análisis clasificatorio de cluster, con el objetivo de establecer una tipología migratoria de las localidades en estudio. Los resultados mostraron que hay importantes diferenciales en la inserción de los municipios en la red migratoria, en la que existe un gran número de lugares poco conectados en contraste con un número pequeño de puntos que experimentan fuertes conexiones, y en los cuales la población circula rápidamente. La clasificación señala la existencia de nuevas categorías de lugares, además de las definiciones clásicas de atracción y repulsión, como la rotación migratoria.