Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9701, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678109

RESUMO

Short-cationic alpha-helical antimicrobial peptides (SCHAMPs) are promising candidates to combat the growing global threat of antimicrobial resistance. They are short-sequenced, selective against bacteria, and have rapid action by destroying membranes. A full understanding of their mechanism of action will provide key information to design more potent and selective SCHAMPs. Molecular Dynamics (MD) simulations are invaluable tools that provide detailed insights into the peptide-membrane interaction at the atomic- and meso-scale level. We use atomistic and coarse-grained MD to look into the exact steps that four promising SCHAMPs-BP100, Decoralin, Neurokinin-1, and Temporin L-take when they interact with membranes. Following experimental set-ups, we explored the effects of SCHAMPs on anionic membranes and vesicles at multiple peptide concentrations. Our results showed all four peptides shared similar binding steps, initially binding to the membrane through electrostatic interactions and then flipping on their axes, dehydrating, and inserting their hydrophobic moieties into the membrane core. At higher concentrations, fully alpha-helical peptides induced membrane budding and protrusions. Our results suggest the carpet mode of action is fit for the description of SCHAMPs lysis activity and discuss the importance of large hydrophobic residues in SCHAMPs design and activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Eletricidade Estática
2.
RSC Adv ; 12(8): 4573-4588, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425494

RESUMO

BP100, a short antimicrobial peptide, produces membrane perturbations that depend on lipid structure and charge, salts presence, and peptide/lipid molar ratios. As membrane perturbation mechanisms are not fully understood, the atomic scale nature of peptide/membrane interactions requires a close-up view analysis. Molecular Dynamics (MD) simulations are valuable tools for describing molecular interactions at the atomic level. Here, we use MD simulations to investigate alterations in membrane properties consequent to BP100 binding to zwitterionic and anionic model membranes. We focused on membrane property changes upon peptide binding, namely membrane thickness, order parameters, surface curvature, lipid lateral diffusion and membrane hydration. In agreement with experimental results, our simulations showed that, when buried into the membrane, BP100 causes a decrease in lipid lateral diffusion and lipid acyl-chain order parameters and sharp local membrane thinning. These effects were most pronounced on the closest lipids in direct contact with the membrane-bound peptide. In DPPG and anionic-aggregate-containing DPPC/DPPG membranes, peptide flip (rotation of its non-polar facet towards the membrane interior) induced marked negative membrane curvature and enhanced the water residence half-life time in the lipid hydrophobic core and transmembrane water transport in the direction of the peptide. These results further elucidate the consequences of the initial interaction of cationic alpha-helical antimicrobial peptides with membranes.

3.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158044

RESUMO

Molecular dynamics (MD) simulations represent an essential tool in the toolbox of modern chemistry, enabling the prediction of experimental observables for a variety of chemical systems and processes and majorly impacting the study of biological membranes. However, the chemical diversity of complex lipids beyond phospholipids brings new challenges to well-established protocols used in MD simulations of soft matter and requires continuous assessment to ensure simulation reproducibility and minimize unphysical behavior. Lipopolysaccharides (LPS) are highly charged glycolipids whose aggregation in a lamellar arrangement requires the binding of numerous cations to oppositely charged groups deep inside the membrane. The delicate balance between the fully hydrated carbohydrate region and the smaller hydrophobic core makes LPS membranes very sensitive to the choice of equilibration protocol. In this work, we show that the protocol successfully used to equilibrate phospholipid bilayers when applied to complex lipopolysaccharide membranes occasionally leads to a small expansion of the simulation box very early in the equilibration phase. Although the use of a barostat algorithm controls the system dimension and particle distances according to the target pressure, fluctuation in the fleeting pressure occasionally enables a few water molecules to trickle into the hydrophobic region of the membrane, with spurious solvent buildup. We show that this effect stems from the initial steps of NPT equilibration, where initial pressure can be fairly high. This can be solved with the use of a stepwise-thermalization NVT/NPT protocol, as demonstrated for atomistic MD simulations of LPS/DPPE and lipid-A membranes in the presence of different salts using an extension of the GROMOS forcefield within the GROMACS software. This equilibration protocol should be standard procedure for the generation of consistent structural ensembles of charged glycolipids starting from atomic coordinates not previously pre-equilibrated. Although different ways to deal with this issue can be envisioned, we investigated one alternative that could be readily available in major MD engines with general users in mind.


Assuntos
Glicolipídeos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Termodinâmica
4.
J Chem Inf Model ; 60(2): 604-610, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31790243

RESUMO

Specific ion effects in zwitterionic micelles, especially for anions, are evident in reaction kinetics, zeta potential, and critical micelle concentration measurements. However, anion adsorption to zwitterionic micelles does not produce significant changes in shape, aggregation number, or interfacial hydration. Here we used molecular dynamics simulation of systems containing sulfobetaine zwitterionic micelles of N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DPS) and nine different salts to explore ion adsorption in terms of group dehydration. Our results, in line with those obtained for cationic micelles, showed that the adsorption degree of anions containing both hydrophobic and hydrophilic portions, i.e., hydrotropes, were correlated with the ion dehydration and were governed mainly by the hydrophobic portion dehydration upon adsorption.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Micelas , Simulação de Dinâmica Molecular , Compostos de Amônio Quaternário/química , Água/química , Adsorção , Conformação Molecular
5.
Sci Rep ; 9(1): 8622, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197199

RESUMO

BP100 is a short antimicrobial peptide and can also act as a molecule-carrier into cells. Like with other antimicrobial peptides, the precise mechanism of membrane disruption is not fully understood. Here we use computer simulations to understand, at a molecular level, the initial interaction between BP100 and zwitterionic/negatively charged model membranes. In agreement with experimental results, our simulations showed BP100 folded into an alpha helix when in contact with negatively charged membranes. BP100 binding induced the aggregation of negatively charged lipids on mixed membranes composed of zwitterionic and anionic lipids. The peptide in alpha-helix conformation initially interacts with the membrane via electrostatic interactions between the negatively charged lipids and the positively charged residues of the peptide. At that point the peptide flips, burying the hydrophobic residues into the bilayer highlighting the importance of the hydrophobic effect contribution to the initial interaction of cationic antimicrobial peptides with membranes.


Assuntos
Anti-Infecciosos/farmacologia , Oligopeptídeos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , Anti-Infecciosos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Fosfatidilgliceróis/química , Estrutura Secundária de Proteína , Água/química
6.
Phys Chem Chem Phys ; 19(45): 30658-30666, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29119186

RESUMO

The properties of ionic micelles depend on the nature of the counterion, and these effects become more evident as the ion adsorption at the interface increases. Prediction of the relative extent of ion adsorption is required for rational design of ionic micellar aggregates. Unlike the well understood adsorption of monatomic ions, the adsorption of polyatomic ions is not easily predicted. We combined experimental and computational methods to evaluate the affinity of hydrotropic ions, i.e., ions with polar and apolar regions, to the surface of positively charged micelles. We analyzed cationic micelles of dodecyltrimethylammonium and six hydrotropic counterions: methanesulfonate, trifluoromethanesulfonate, benzenesulfonate, acetate, trifluoroacetate and benzoate. Our results demonstrated that the apolar region of hydrotropic ions had the largest influence on micellar properties. The dehydration of the apolar region of hydrotropic ions upon their adsorption at the micellar interface determined the ion adsorption extension, differently to what was expected based on Collins' law of matching affinities. These results may lead to more general models to describe the adsorption of ions, including polyatomic ions, at the micellar interface.

7.
J Org Chem ; 80(17): 8637-42, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26263052

RESUMO

The dediazoniation of aryldiazonium salts in mixed solvents proceeds by a borderline SN1 and SN2 pathway, and product distribution should be proportional to the composition of the solvation shell of the carbon attached to the -N2 group (ipso carbon). The rates of dediazoniation of 2,4,6-trimethylbenzenediazonium in water, methanol, ethanol, propanol, and acetonitrile were similar, but measured product distributions were noticeably dependent on the nature of the water/cosolvent mixture. Here we demonstrated that solvent distribution in the first solvation shell of the ipso carbon, calculated from classical molecular dynamics simulations, is equal to the measured product distribution. Furthermore, we showed that regardless of the charge distribution of the initial state, i.e., whether the positive charge is smeared over the molecule or localized on phenyl moiety, the solvent distribution around the reaction center is nearly the same.

8.
Langmuir ; 31(9): 2609-14, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25689018

RESUMO

Dodecyltrimethylammonium triflate (DTATf) micelles possess lower degree of counterion dissociation (α), lower hydration, and higher packing of monomers than other micelles of similar structure. Addition of sodium triflate ([NaTf] > 0.05 M) to DTATf solutions promotes phase separation. This phenomenon is commonly observed in oppositely charged surfactant mixtures, but it is rare for ionic surfactants and relatively simple counterions. While the properties of DTATf have already been reported, the driving forces for the observed phase separation with added salt remain unclear. Thus, we propose an interpretation for the observed phase separation in cationic surfactant solutions. Addition of up to 0.03 M NaTf to micellar DTATf solutions led to a limited increase of the aggregation number, to interface dehydration, and to a progressive decrease in α. The viscosity of DTATf solutions of higher concentration ([DTATf] ≥ 0.06 M) reached a maximum with increasing [NaTf], though the aggregation number slightly increased, and no shape change occurred. We hypothesize that this maximum results from a decrease in interaggregate repulsion, as a consequence of increased ion binding. This reduction in micellar repulsion without simultaneous infinite micellar growth is, probably, the major driving force for phase separation at higher [NaTf].

9.
Micron ; 69: 15-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437851

RESUMO

The light scattering properties of hexagonal and triangular gold nanodisks were investigated by means of Cytoviva hyperspectral dark-field microscopy, exploring the huge enhancement of the scattered waves associated with the surface plasmon resonance (SPR) effect. Thanks to the high resolution capability of the dark-field microscope, the SPR effect turned it possible to probe the individual nanoparticles directly from their hyperspectral images, extrapolating the classical optical resolution limit, and providing their corresponding extinction spectra. Blue spectral shifts involving the in-plane dipolar modes were observed for the hexagonal gold nanodisks in relation to the triangular ones, allowing their spectroscopic differentiation in the dark-field images.

10.
J Biol Chem ; 289(44): 30690-30701, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25237191

RESUMO

The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1(WT) and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp(32) residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp(32) residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1(WT) and hSOD1(G93A) mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp(32) residue in the process. The results showed that Trp(32) residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp(32) residue (bovine SOD1 and hSOD1(W32F) mutant). The results support a role for the oxidation products of the hSOD1-Trp(32) residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1.


Assuntos
Superóxido Dismutase/química , Triptofano/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Bicarbonatos/química , Humanos , Dados de Sequência Molecular , Oxirredução , Agregação Patológica de Proteínas , Carbonilação Proteica , Multimerização Proteica , Superóxido Dismutase/genética , Superóxido Dismutase-1
11.
Langmuir ; 30(5): 1239-49, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24467445

RESUMO

Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.

12.
Langmuir ; 29(32): 10037-46, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23899188

RESUMO

The properties of ionic micelles are affected by the nature of the counterion. Specific ion effects can be dramatic, inducing even shape and phase changes in micellar solutions, transitions apparently related to micellar hydration and counterion binding at the micellar interface. Thus, determining the hydration and dynamics of ions in micellar systems capable of undergoing such transitions is a crucial step in understanding shape and phase changes. For cationic micelles, such transitions are common with large organic anions as counterions. Interestingly, however, phase separation also occurs for dodecyltrimethylammonium triflate (DTATf) micelles in the presence of sodium triflate (NaTf). Specific ion effects for micellar solutions of dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), methanesulfonate (DTAMs), and triflate (DTATf) were studied with dielectric relaxation spectroscopy (DRS), a technique capable of monitoring hydration and counterion dynamics of micellar aggregates. In comparison to DTAB, DTAC, and DTAMs, DTATf micelles were found to be considerably less hydrated and showed reduced counterion mobility at the micellar interface. The obtained DTATf and DTAMs data support the reported central role of the anion's -CF3 moiety with respect to the properties of DTATf micelles. The reduced hydration observed for DTATf micelles was rationalized in terms of the higher packing of this surfactant compared to that of other DTA-based systems. The decreased mobility of Tf(-) anions condensed at the DTATf interface strongly suggests the insertion of Tf(-) in the micellar interface, which is apparently driven by the strong hydrophobicity of -CF3.


Assuntos
Espectroscopia Dielétrica , Mesilatos/química , Compostos de Amônio Quaternário/química , Micelas , Estrutura Molecular , Água/química
13.
Langmuir ; 29(13): 4193-203, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23473070

RESUMO

Specific ion effects in surfactant solutions affect the properties of micelles. Dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), and methanesulfonate (DTAMs) micelles are typically spherical, but some organic anions can induce shape or phase transitions in DTA(+) micelles. Above a defined concentration, sodium triflate (NaTf) induces a phase separation in dodecyltrimethylammonium triflate (DTATf) micelles, a phenomenon rarely observed in cationic micelles. This unexpected behavior of the DTATf/NaTf system suggests that DTATf aggregates have unusual properties. The structural properties of DTATf micelles were analyzed by time-resolved fluorescence quenching, small-angle X-ray scattering, nuclear magnetic resonance, and electron paramagnetic resonance and compared with those of DTAC, DTAB, and DTAMs micelles. Compared to the other micelle types, the DTATf micelles had a higher average number of monomers per aggregate, an uncommon disk-like shape, smaller interfacial hydration, and restricted monomer chain mobility. Molecular dynamic simulations supported these observations. Even small water-soluble salts can profoundly affect micellar properties; our data demonstrate that the -CF3 group in Tf(-) was directly responsible for the observed shape changes by decreasing interfacial hydration and increasing the degree of order of the surfactant chains in the DTATf micelles.


Assuntos
Mesilatos/química , Micelas , Compostos de Amônio Quaternário/química , Cátions/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Tensoativos/química
14.
Magn Reson Chem ; 47(3): 270-2, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19086010

RESUMO

The complete assignment of the (1)H and (13)C NMR spectra of the diastereomeric pairs of some alpha-arylsulfinyl-substituted N-methoxy-N-methylpropionamides with the substituents methoxy, methyl, chloro, nitro is reported.

15.
Magn Reson Chem ; 45(1): 87-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17080492

RESUMO

The complete assignments of the 1H and 13C NMR spectra of the some alpha-arylthio and alpha-arylsulfonyl substituted N-methoxy-N-methyl propionamides, bearing methoxy, methyl, chloro, and nitro as substituents at the phenyl ring are reported.


Assuntos
Amidas/química , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Enxofre/química , Isótopos de Carbono , Hidrogênio , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...