Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(5): e14043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882284

RESUMO

Allopolyploidy is a common speciation mechanism in plants; however, its physiological and ecological consequences in niche partitioning have been scarcely studied. In this sense, leaf traits are good proxies to study the adaptive capacity of allopolyploids and diploid parents to their respective environmental conditions. In the present work, leaf water relations (assessed through pressure-volume curves) and structural and anatomical traits of the allotetraploid fern Oeosporangium tinaei and its diploid parents, Oeosporangium hispanicum and Oeosporangium pteridioides, were studied under controlled conditions in response to a water stress (WS) cycle. O. hispanicum showed the lowest osmotic potential at turgor loss point (πtlp ) and leaf capacitance, together with higher leaf mass per area (LMA), leaf thickness (LT), leaf density (LD), and leaf dry matter content (LDMC), whereas O. pteridioides presented the opposite set of traits (high πtlp and capacitance, and low LMA, LT, LD, and LDMC). O. tinaei showed an intermediate position for most of the studied traits. The responsiveness (osmotic and elastic adjustments) to WS was low, although most of the traits explained the segregation of the three species across a range of drought tolerance according to the rank: O. hispanicum > O. tinaei > O. pteridioides. These trait differences may underlie the niche segregation among coexisting populations of the three species in the Mediterranean basin.


Assuntos
Gleiquênias , Gleiquênias/genética , Diploide , Folhas de Planta/genética , Plantas , Resistência à Seca , Desidratação , Secas
2.
Plant Physiol Biochem ; 201: 107862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37413941

RESUMO

Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.


Assuntos
Dióxido de Carbono , Malatos , Malatos/metabolismo , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Citratos/metabolismo
3.
Plant Cell Environ ; 45(2): 296-311, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800300

RESUMO

Recent results suggest that metabolism-mediated stomatal closure mechanisms are important to regulate differentially the stomatal speediness between ferns and angiosperms. However, evidence directly linking mesophyll metabolism and the slower stomatal conductance (gs ) in ferns is missing. Here, we investigated the effect of exogenous application of abscisic acid (ABA), sucrose and mannitol on stomatal kinetics and carried out a metabolic fingerprinting analysis of ferns and angiosperms leaves harvested throughout a diel course. Fern stomata did not respond to ABA in the time period analysed. No differences in the relative decrease in gs was observed between ferns and the angiosperm following provision of sucrose or mannitol. However, ferns have slower gs responses to these compounds than angiosperms. Metabolomics analysis highlights that ferns have a higher accumulation of secondary rather than primary metabolites throughout the diel course, with the opposite being observed in angiosperms. Our results indicate that metabolism-mediated stomatal closure mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms, in which the slower stomatal closure in ferns is associated with the lack of ABA-responsiveness, to a reduced capacity to respond to mesophyll-derived sucrose and to a higher carbon allocation toward secondary metabolism, which likely modulates both photosynthesis-gs and growth-stress tolerance trade-offs.


Assuntos
Ácido Abscísico/farmacologia , Gleiquênias/fisiologia , Magnoliopsida/fisiologia , Manitol/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Sacarose/farmacologia , Gleiquênias/metabolismo , Cinética , Magnoliopsida/metabolismo
4.
Plant J ; 108(4): 1213-1233, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486764

RESUMO

13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.


Assuntos
Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise do Fluxo Metabólico/métodos , Isótopos de Carbono/análise , Ácido Glutâmico/análise , Glicólise , Espectroscopia de Ressonância Magnética , Malatos/análise , Fotossíntese , Folhas de Planta/metabolismo
5.
New Phytol ; 223(4): 1873-1887, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099898

RESUMO

Stomatal responses to environmental signals differ substantially between ferns and angiosperms. However, the mechanisms that lead to such different responses remain unclear. Here we investigated the extent to which leaf metabolism contributes to coordinate the differential stomatal behaviour among ferns and angiosperms. Stomata from all species were responsive to light and CO2 transitions. However, fern stomatal responses were slower and minor in both absolute and relative terms. Angiosperms have higher stomatal density, but this is not correlated with speed of stomatal closure. The metabolic responses throughout the diel course and under different CO2 conditions differ substantially among ferns and angiosperms. Higher sucrose content and an increased sucrose-to-malate ratio during high CO2 -induced stomatal closure was observed in angiosperms compared to ferns. Furthermore, the speed of stomatal closure was positively and negatively correlated with sugars and organic acids, respectively, suggesting that the balance between sugars and organic acids aids in explaining the faster stomatal responses of angiosperms. Our results suggest that mesophyll-derived metabolic signals, especially those associated with sucrose and malate, may also be important to modulate the differential stomatal behaviour between ferns and angiosperms, providing important new information that helps in understanding the metabolism-mediated mechanisms regulating stomatal movements across land plant evolution.


Assuntos
Dióxido de Carbono/metabolismo , Gleiquênias/fisiologia , Luz , Magnoliopsida/fisiologia , Malatos/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Sacarose/metabolismo , Análise Discriminante , Gleiquênias/efeitos da radiação , Análise dos Mínimos Quadrados , Magnoliopsida/efeitos da radiação , Metaboloma/efeitos da radiação , Fotossíntese/efeitos da radiação , Análise de Componente Principal
6.
Sci Data ; 5: 180171, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129936

RESUMO

MicroRNAs play an important role in the regulation of immune responses. The influence of epigenetic mechanisms, particularly RNA-mediated post-transcriptional regulation of host immune responses has been proven vital following infections by different pathogens, and bacteria can modulated host miRNAs. Global miRNA expression analysis from macrophages infected in vitro with different strains of Leptospira spp was performed using miRNA 4.1 microarray strips. Leptospirosis is a bacterial zoonosis of global importance, responsible for significant morbidity and mortality worldwide. Despite considerable advances, much is yet to be discovered about disease pathogenicity, particularly in regards to host-pathogen interactions. We present here a high-quality dataset examining the microtranscriptome of murine macrophages J774A.1 following 8h of infection with virulent, attenuated and saprophyte strains of Leptospira. Metadata files were submitted to the Gene Expression Omnibus (GEO) repository.


Assuntos
Leptospira , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs , Animais , Regulação da Expressão Gênica , Leptospira/classificação , Leptospira/genética , Leptospirose/genética , Leptospirose/microbiologia , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Especificidade da Espécie
7.
Methods Mol Biol ; 1778: 47-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761430

RESUMO

Stable-isotope labeling analysis has been used to discover new metabolic pathways and their key regulatory points in a wide range of organisms. Given the complexity of the plant metabolic network, this analysis provides information complementary to that obtained from metabolite profiling that can be used to understand how plants cope with adverse conditions, and how metabolism varies between different cells, tissues, and organs. Here we describe the experimental procedures from sample harvesting and extraction to mass spectral analysis and interpretation that allow the researcher to perform 13C-labeling experiments. A wide range of plant material, from single cells to whole plants, can be used to investigate the metabolic fate of the 13C from a predefined tracer. Thus, a key point of this analysis is to choose the correct biological system, the substrate and the condition to be investigated; all of which implicitly relies on the biological question to be investigated. Rapid sample quenching and a careful data analysis are also critical points in such studies. By contrast to other metabolomic approaches, stable-isotope labeling can provide information concerning the fluxes through metabolic networks, which is essential for understanding and manipulating metabolic phenotypes and therefore of pivotal importance for both systems biology and plant metabolic engineering.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Plantas/metabolismo , Biologia de Sistemas/métodos , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...