Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683374

RESUMO

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Assuntos
Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Brasil , Humanos , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Caspases/genética , Caspases/metabolismo , Expressão Gênica/genética
2.
Vaccines (Basel) ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005964

RESUMO

In the 18th century, English physician Edward Jenner laid the foundation for modern vaccination by achieving protection against variola [...].

3.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511330

RESUMO

The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Imunidade Humoral , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusão/genética , Imunoglobulina G , Imunoglobulina M/genética , Antígenos de Protozoários/genética
4.
Viruses ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37112903

RESUMO

The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.


Assuntos
COVID-19 , Resfriado Comum , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2/genética , Epitopos de Linfócito B/genética , Teste para COVID-19 , COVID-19/diagnóstico , Nucleocapsídeo , Glicoproteína da Espícula de Coronavírus/genética
5.
Mem Inst Oswaldo Cruz ; 118: e220203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018796

RESUMO

BACKGROUND: Recurrence is a hallmark of ocular toxoplasmosis (OT), and conditions that influence its occurrence remain a challenge. Natural killer cells (NK) are effectors cells whose primary is cytotoxic function against many parasites, including Toxoplasma gondii. Among the NK cell receptors, immunoglobulin-like receptors (KIR) deserve attention due to their high polymorphism. OBJECTIVES: This study aimed to analyse the influence of KIR gene polymorphism in the course of OT infection and its association with recurrences after an active episode. METHODS: Ninety-six patients from the Ophthalmologic Clinic of the National Institute of Infectology Evandro Chagas were followed for up to five years. After DNA extraction, genotyping of the patients was performed by polymerase chain reaction sequence-specific oligonucleotide (PCR-SSO) utilising Luminex equipment for reading. During follow-up, 60.4% had a recurrence. FINDINGS: We identified 25 KIR genotypes and found a higher frequency of genotype 1 (31.7%) with worldwide distribution. We note that the KIR2DL2 inhibitor gene and the gene activator KIR2DS2 were more frequent in patients without recurrence. Additionally, we observed that individuals who carry these genes progressed recurrence episodes slowly compared to individuals who do not carry these genes. MAIN CONCLUSIONS: The KIR2DL2 and KIR2DS2 are associated as possible protection markers against ocular toxoplasmosis recurrence (OTR).


Assuntos
Toxoplasmose Ocular , Humanos , Brasil , Receptores KIR/genética , Genótipo , Imunoglobulinas/genética , Frequência do Gene
6.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983046

RESUMO

Leishmaniasis represents a complex of diseases with a broad clinical spectrum and epidemiological diversity, considered a major public health problem. Although there is treatment, there are still no vaccines for cutaneous leishmaniasis. Because Leishmania spp. is an intracellular protozoan with several escape mechanisms, a vaccine must provoke cellular and humoral immune responses. Previously, we identified the Leishmania homolog of receptors for activated C kinase (LACK) and phosphoenolpyruvate carboxykinase (PEPCK) proteins as strong immunogens and candidates for the development of a vaccine strategy. The present work focuses on the in silico prediction and characterization of antigenic epitopes that might interact with mice or human major histocompatibility complex class I. After immunogenicity prediction on the Immune Epitope Database (IEDB) and the Database of MHC Ligands and Peptide Motifs (SYFPEITHI), 26 peptides were selected for interaction assays with infected mouse lymphocytes by flow cytometry and ELISpot. This strategy identified nine antigenic peptides (pL1-H2, pPL3-H2, pL10-HLA, pP13-H2, pP14-H2, pP15-H2, pP16-H2, pP17-H2, pP18-H2, pP26-HLA), which are strong candidates for developing a peptide vaccine against leishmaniasis.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Epitopos , Antígenos de Histocompatibilidade Classe I , Antígenos HLA , Leishmania/metabolismo , Peptídeos/química , Vacinas de Subunidades Antigênicas , Complexo Principal de Histocompatibilidade
7.
Vaccines (Basel) ; 11(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851237

RESUMO

Sphingomyelin is a major constituent of eukaryotic cell membranes, and if degraded by bacteria sphingomyelinases may contribute to the pathogenesis of infection. Among Leptospira spp., there are five sphingomyelinases exclusively expressed by pathogenic leptospires, in which Sph2 is expressed during natural infections, cytotoxic, and implicated in the leptospirosis hemorrhagic complications. Considering this and the lack of information about associations between Sph2 and leptospirosis severity, we use a combination of immunoinformatics approaches to identify its B-cell epitopes, evaluate their reactivity against samples from leptospirosis patients, and investigate the role of antibodies anti-Sph2 in protection against severe leptospirosis. Two B-cell epitopes, Sph2(176-191) and Sph2(446-459), were predicted in Sph2 from L. interrogans serovar Lai, presenting different levels of identity when compared with other pathogenic leptospires. These epitopes were recognized by about 40% of studied patients with a prevalence of IgG antibodies against both Sph2(176-191) and Sph2(446-459). Remarkably, just individuals with low reactivity to Sph2(176-191) presented clinical complications, while high responders had only mild symptoms. Therefore, we identified two B-cell linear epitopes, recognized by antibodies of patients with leptospirosis, that could be further explored in the development of multi-epitope vaccines against leptospirosis.

8.
Vaccines (Basel) ; 11(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36851323

RESUMO

The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.

9.
J Periodontol ; 94(7): 858-867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36704931

RESUMO

BACKGROUND: Ozone is a molecule that plays an important role in dentistry, specially for wound healing. The aim of the present study was to clinically and immunologically evaluate the effect of ozonated oil on the healing of palatal wounds. METHODS: This is a prospective, longitudinal, triple-blind, randomized, placebo-controlled clinical trial. The groups were divided as follows: Test group (n = 14): after removal of the free gingival graft (FGG), the palatal wound was treated with ozonized seed sunflower oil with a peroxide index between 510 and 625 meq O2 /kg; Control group (n = 14): after removal of the FGG, the palatal wound was treated with non-ozonated sunflower oil (placebo). The treatments were applied three times a day, for 7 days. RESULTS: There were no significant differences in the measurements of wound area (mm2 ) between the test and control groups in the different periods evaluated (0, 3, 7, and 14 days; p > 0.05). The intra-group analysis showed a significant decrease in wound size over the course of days (0, 3, 7, and 14 days; p < 0.05). Vascular endothelial growth factor (VEGF; pg/mL) presented a significant reduction at 7 days (p < 0.05) compared to day 3 in the test group (p < 0.05). There was a statistical difference for malondialdehyde (MDA; pg/mL) in the test group between 3 and 7 days post-treatment (p < 0.05) and between test and control groups on the 7th day (p < 0.05). CONCLUSIONS: The application of highly ozonated sunflower oil did not improve the remaining scar area of the palate, decreasing the VEGF and increasing the oxidative stress marker MDA.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Cicatrização , Óleo de Girassol/farmacologia , Estudos Prospectivos , Palato/cirurgia
10.
Vaccines, v. 11, n. 2, 359, fev. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4807

RESUMO

Sphingomyelin is a major constituent of eukaryotic cell membranes, and if degraded by bacteria sphingomyelinases may contribute to the pathogenesis of infection. Among Leptospira spp., there are five sphingomyelinases exclusively expressed by pathogenic leptospires, in which Sph2 is expressed during natural infections, cytotoxic, and implicated in the leptospirosis hemorrhagic complications. Considering this and the lack of information about associations between Sph2 and leptospirosis severity, we use a combination of immunoinformatics approaches to identify its B-cell epitopes, evaluate their reactivity against samples from leptospirosis patients, and investigate the role of antibodies anti-Sph2 in protection against severe leptospirosis. Two B-cell epitopes, Sph2(176-191) and Sph2(446-459), were predicted in Sph2 from L. interrogans serovar Lai, presenting different levels of identity when compared with other pathogenic leptospires. These epitopes were recognized by about 40% of studied patients with a prevalence of IgG antibodies against both Sph2(176-191) and Sph2(446-459). Remarkably, just individuals with low reactivity to Sph2(176-191) presented clinical complications, while high responders had only mild symptoms. Therefore, we identified two B-cell linear epitopes, recognized by antibodies of patients with leptospirosis, that could be further explored in the development of multi-epitope vaccines against leptospirosis.

11.
PLoS Negl Trop Dis ; 16(11): e0010773, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417454

RESUMO

BACKGROUND: To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS: The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE: This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.


Assuntos
Imunoglobulina G , Vacinas , Humanos , Plasmodium vivax , Estudos Soroepidemiológicos , Formação de Anticorpos
13.
Malar J ; 21(1): 6, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983540

RESUMO

BACKGROUND: The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. METHODS: This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. RESULTS: The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. CONCLUSIONS: The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine.


Assuntos
Formação de Anticorpos , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Glicoproteínas de Membrana/imunologia , Fragmentos de Peptídeos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Brasil , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Clin Exp Dent ; 14(12): e1048-e1051, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601242

RESUMO

Paecilomyces variotti (P. variotti) is a fungal species found in soil, wood and some foods, and has been associated with some severe systemic infections. P. variotti has not been previously identified in carious tissue, and the aim of the present study is to report the presence of P. variotti in a deep carious lesion discussing its possible local and systemic associations. A 28 year-old male was submitted to extraction of the upper left second premolar (tooth #25) presenting a deep carious lesion. After extraction the tooth was cleaved in its long axis, and the infected dentinal tissue was curetted and submitted to microbiological analysis using CHROMagar® Candida medium and Malt Extract Agar. Macroscopic and microscopic analysis confirmed the presence of P. variotti in the carious tissue. Post-operatory period was uneventful, healing of the dental socket was complete, and the patient remained well during the follow-up period. P. variotti, a fungus not considered saprophyte in the oral cavity, was encountered in a deep caries lesion, and its potential association with local and systemic infections should be considered. Key words:Paecilomyces variotti, dental caries.

15.
Oral Dis ; 28 Suppl 2: 2417-2422, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34342110

RESUMO

OBJECTIVE: The aim of the present case-control study was to evaluate the morphological aspects of the epithelial cells from the dorsum of the tongue and the expression of the SARS-CoV-2 Spike protein in these cells, in patients with and without COVID-19 infection. METHODS: 24 individuals with at least one symptom of COVID-19 were recruited among inpatients from Hospital Universitário Pedro Ernesto (Rio de Janeiro, Brazil). 14 patients who tested positive for COVID-19 by RT-PCR were included in the case group, and 10 patients who tested negative were included in the control group. Cytological smears from the dorsum of the tongue were obtained from all patients and analyzed using immunohistochemistry directed against SARS-CoV-2-Spike protein. Morphological changes in epithelial cells were analyzed using light microscopy. RESULTS: Immunohistochemistry showed that 71% of the COVID-19 patients presented epithelial cells positive for the presence of the SARS-CoV-2 Spike protein, and all cells coming from patients in the control group were negative. Cytological analysis showed significant differences when comparing epithelial cells from COVID-19-positive and COVID-19-negative patients. CONCLUSION: COVID-19 may generate dimensional changes in tongue epithelial cells; however, further studies are necessary to understand how this happens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos de Casos e Controles , Brasil , Células Epiteliais , Língua
16.
PNAS Nexus ; 1(5): pgac272, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712329

RESUMO

To eliminate malaria, scalable tools that are rapid, affordable, and can detect patients with low parasitemia are required. Non-invasive diagnostic tools that are rapid, reagent-free, and affordable would also provide a justifiable platform for testing malaria in asymptomatic patients. However, non-invasive surveillance techniques for malaria remain a diagnostic gap. Here, we show near-infrared Plasmodium absorption peaks acquired non-invasively through the skin using a miniaturized hand-held near-infrared spectrometer. Using spectra from the ear, these absorption peaks and machine learning techniques enabled non-invasive detection of malaria-infected human subjects with varying parasitemia levels in less than 10 s.

17.
Genes (Basel) ; 12(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828264

RESUMO

The Plasmodium vivax Cysteine-Rich Protective Antigen (PvCyRPA) has an important role in erythrocyte invasion and has been considered a target for vivax malaria vaccine development. Nonetheless, its genetic diversity remains uncharted in Brazilian malaria-endemic areas. Therefore, we investigated the pvcyrpa genetic polymorphism in 98 field isolates from the Brazilian Amazon and its impact on the antigenicity of predicted B-cell epitopes. Genetic diversity parameters, population genetic analysis, neutrality test and the median-joining network were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. One synonymous and 26 non-synonymous substitutions defined fifty haplotypes. The nucleotide diversity and Tajima's D values varied across the coding gene. The exon-1 sequence had greater diversity than those of exon-2. Concerning the prediction analysis, seven sequences were predicted as linear B cell epitopes, the majority contained in conformational epitopes. Moreover, important amino acid polymorphism was detected in regions predicted to contain residues participating in B-cell epitopes. Our data suggest that the pvcyrpa gene presents a moderate polymorphism in the studied isolates and such polymorphisms alter amino acid sequences contained in potential B cell epitopes, an important observation considering the antigen potentiality as a vaccine candidate to cover distinct P. vivax endemic areas worldwide.


Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Cisteína/química , Cisteína/genética , Feminino , Variação Genética , Genética Populacional , Geografia , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/imunologia , Plasmodium vivax/isolamento & purificação , Polimorfismo Genético , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Desenvolvimento de Vacinas , Adulto Jovem
18.
Front Immunol ; 12: 727580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621273

RESUMO

Despite being treatable, leprosy still represents a major public health problem, and many mechanisms that drive leprosy immunopathogenesis still need to be elucidated. B cells play important roles in immune defense, being classified in different subgroups that present distinct roles in the immune response. Here, the profile of B cell subpopulations in peripheral blood of patients with paucibacillary (TT/BT), multibacillary (LL/BL) and erythema nodosum leprosum was analyzed. B cell subpopulations (memory, transition, plasmablasts, and mature B cells) and levels of IgG were analyzed by flow cytometry and ELISA, respectively. It was observed that Mycobacterium leprae infection can alter the proportions of B cell subpopulations (increase of mature and decrease of memory B cells) in patients affected by leprosy. This modulation is associated with an increase in total IgG and the patient's clinical condition. Circulating B cells may be acting in the modulation of the immune response in patients with various forms of leprosy, which may reflect the patient's ability to respond to M. leprae.


Assuntos
Linfócitos B/imunologia , Hanseníase Multibacilar/imunologia , Adulto , Feminino , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Hanseníase Multibacilar/sangue , Masculino , Pessoa de Meia-Idade , Fenótipo
19.
Pathogens ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684199

RESUMO

Coxiella burnetii is a global, highly infectious intracellular bacterium, able to infect a wide range of hosts and to persist for months in the environment. It is the etiological agent of Q fever-a zoonosis of global priority. Currently, there are no national surveillance data on C. burnetii's seroprevalence for any South American country, reinforcing the necessity of developing novel and inexpensive serological tools to monitor the prevalence of infections among humans and animals-especially cattle, goats, and sheep. In this study, we used immunoinformatics and computational biology tools to predict specific linear B-cell epitopes in three C. burnetii outer membrane proteins: OMP-H (CBU_0612), Com-1 (CBU_1910), and OMP-P1 (CBU_0311). Furthermore, predicted epitopes were tested by ELISA, as synthetic peptides, against samples of patients reactive to C. burnetii in indirect immunofluorescence assay, in order to evaluate their natural immunogenicity. In this way, two linear B-cell epitopes were identified in each studied protein (OMP-H(51-59), OMP-H(91-106), Com-1(57-76), Com-1(191-206), OMP-P1(197-209), and OMP-P1(215-227)); all of them were confirmed as naturally immunogenic by the presence of specific antibodies in 77% of studied patients against at least one of the identified epitopes. Remarkably, a higher frequency of endocarditis cases was observed among patients who presented an intense humoral response to OMP-H and Com-1 epitopes. These data confirm that immunoinformatics applied to the identification of specific B-cell epitopes can be an effective strategy to improve and accelerate the development of surveillance tools against neglected diseases.

20.
J Infect Dis ; 224(10): 1672-1683, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34427670

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) can progress to severe pneumonia with respiratory failure and is aggravated by the deregulation of the immune system causing an excessive inflammation including the cytokine storm. METHODS: In this study, we report that severe acutely infected patients have high levels of both type-1 and type-2 cytokines. RESULTS: Our results show abnormal cytokine levels upon T-cell stimulation, in a nonpolarized profile. Furthermore, our findings indicate that this hyperactive cytokine response is associated with a significantly increased frequency of late-differentiated T cells with particular phenotype of effector exhausted/senescent CD28-CD57+ cells. Of note, we demonstrated for the first time an increased frequency of CD3+CD4+CD28-CD57+ T cells with expression of programmed death 1, one of the hallmarks of T-cell exhaustion. CONCLUSIONS: These findings reveal that COVID-19 is associated with acute immunodeficiency, especially within the CD4+ T-cell compartment, and points to possible mechanisms of loss of clonal repertoire and susceptibility to viral relapse and reinfection events.


Assuntos
COVID-19 , Antígenos CD28 , Estado Terminal , Citocinas/metabolismo , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...