RESUMO
Oral squamous cell carcinoma (OSCC) represents ~90% of all oral cancers, being the eighth most common cancer in men. The overall 5-year survival rate is only 39% for metastatic cancers, and currently used chemotherapeutics can cause important side effects. Thus, there is an urgency in developing new and effective anti-cancer agents. As both chalcones and 1,2,3-triazoles are valuable pharmacophores/privileged structures in the search for anticancer compounds, in this work, new 1,2,3-triazole-chalcone hybrids were synthesized and evaluated against oral squamous cell carcinoma. By using different in silico, in vitro, and in vivo approaches, we demonstrated that compound 1f has great cytotoxicity and selectivity against OSCC (higher than carboplatin and doxorubicin) and other cancer cells in addition to showing minimal toxicity in mice. Furthermore, we demonstrate that induced cell death occurs by apoptosis and cell cycle arrest at the G2/M phase. Moreover, we found that 1f has a potential affinity for MDM2 protein, similar to the known ligand nutlin-3, and presents a better selectivity, pharmacological profile, and potential to be orally absorbed and is not a substrate of Pg-P when compared to nutlin-3. Therefore, we conclude that 1f is a good lead for a new chemotherapeutic drug against OSCC and possibly other types of cancers.
RESUMO
Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. donovani, presently impacts the health of 500,000 people worldwide, and is treated with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side effects, high cost and/or emergence of resistant parasites. In previous works we have disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a flavonoid compound present in green tea leaves. To date, the mechanism of action of EGCG against Leishmania remains unknown. This work aims to shed new light into the leishmanicidal mode of action of EGCG. Towards this goal, we first confirmed that EGCG inhibits L. infantum promastigote proliferation in a concentration-dependent manner. Second, we established that the leishmanicidal effect of EGCG was associated with i) mitochondria depolarization and ii) decreased concentration of intracellular ATP, and iii) increased concentration of intracellular H2O2. Third, we found that the leishmanicidal effect and the elevated H2O2 levels induced by of EGCG can be abolished by PEG-catalase, strongly suggesting that this flavonoid kills L. infantum promastigotes by disturbing their intracellular redox balance. Finally, we gathered in silico and in vitro evidence that EGCG binds to trypanothione reductase (TR), a central enzyme of the redox homeostasis of Leishmania, acting as a competitive inhibitor of its trypanothione substrate.
Assuntos
Leishmania infantum , Parasitos , Animais , Humanos , Peróxido de Hidrogênio , NADH NADPH Oxirredutases , OxirreduçãoRESUMO
The authors wish to make the following correction to this paper [...].
RESUMO
Schistosomiasis, a disease historically associated with poverty, lack of sanitation and social inequality, is a chronic, debilitating parasitic infection, affecting hundreds of millions of people in endemic countries. Although chemotherapy is capable of reducing morbidity in humans, rapid re-infection demonstrates that the impact of drug treatment on transmission control or disease elimination is marginal. In addition, despite more than two decades of well-executed control activities based on large-scale chemotherapy, the disease is expanding in many areas including Brazil. The development of the Sm14/GLA-SE schistosomiasis vaccine is an emblematic, open knowledge innovation that has successfully completed phase I and phase IIa clinical trials, with Phase II/III trials underway in the African continent, to be followed by further trials in Brazil. The discovery and experimental phases of the development of this vaccine gathered a robust collection of data that strongly supports the ongoing clinical phase. This paper reviews the development of the Sm14 vaccine, formulated with glucopyranosyl lipid A (GLA-SE), from the initial experimental developments to clinical trials including the current status of phase II studies.
RESUMO
The von Hippel-Lindau tumor suppressor protein (pVHL) plays a central role in the oxygen-sensing pathway by regulating the degradation of the hypoxia-inducible factor (HIF-1α). The capture of HIF-1α by pVHL is regulated by an oxygen-dependent hydroxylation of a specific conserved prolyl residue. The VHL gene is mutated in the von Hippel-Lindau cancer predisposition syndrome, which is characterized by the development of highly vascularized tumors and is associated with constitutively high levels of HIF-1α. The disturbance of the dynamic coupling between HIF-1α and pVHL bearing the commonly found mutation F76del was experimentally confirmed but the mechanism of such complex disruption is still not clear. Performing unbiased molecular dynamics simulations, we show that the F76del mutation may enlarge the HIF binding pocket in pVHL and induce the formation of an internal cavity in the hydrophobic core of the ß-domain, which can lead to a partial destabilization of the ß-sheets S1, S4, and S7 and a consequent loss of hydrogen bonds with a conserved recognition motif in HIF. The newly formed cavity has a significant druggability score and may be a suitable target for stabilizing ligands. Studies of this nature may help to fill the information gap between genotype-phenotype correlations with details obtained at atomic level and provide basis for future development of drug candidates, such as pharmacological chaperones, with the specific aim of reverting the dysfunction of such pathological protein complexes found in patients with VHL.